【題目】幾何模型:
條件:如圖1,A、B是直線同旁的兩個(gè)定點(diǎn).
問題:在直線上確定一點(diǎn)P,使PA+PB的值最小.
方法:作點(diǎn)A關(guān)于直線的對稱點(diǎn)A′,連接A′B交于點(diǎn)P,則PA+PB=A′B的值最。ú槐刈C明).
模型應(yīng)用:
(1)如圖2,已知平面直角坐標(biāo)系中兩定點(diǎn)A(0,-1),B(2,-1),P為x軸上一動點(diǎn), 則當(dāng)PA+PB的值最小時(shí),點(diǎn)P的橫坐標(biāo)是______,此時(shí)PA+PB的最小值是______;
(2)如圖3,正方形ABCD的邊長為2,E為AB的中點(diǎn),P是AC上一動點(diǎn).由正方形對稱性可知,B與D關(guān)于直線AC對稱,連接BD,則PB+PE的最小值是______;
(3)如圖4,正方形ABCD的面積為12,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對角線AC上有一動點(diǎn)P,則PD+PE的最小值為 ;
(4)如圖5,在菱形ABCD中,AB=8,∠B=60°,點(diǎn)G是邊CD邊的中點(diǎn),點(diǎn)E、F分別是AG、AD上的兩個(gè)動點(diǎn),則EF+ED的最小值是_______________.
【答案】(1)點(diǎn)P的橫坐標(biāo)是 1 ,此時(shí)PA+PB的最小值是;(2)PB+PE的最小值是 (3)這個(gè)最小值為 ;(4)EF+ED的最小值是
【解析】
(1)取點(diǎn)A關(guān)于x軸對稱的點(diǎn)A′,連接A′B,交x軸于P,作BH⊥x軸于H,求出OP,得到點(diǎn)P的橫坐標(biāo),根據(jù)勾股定理求出A′B,得到答案;
(2)由題意易得PB+PE=PD+PE=DE,在△ADE中,根據(jù)勾股定理求得即可;
(3)由于點(diǎn)B與D關(guān)于AC對稱,所以連接BD,與AC的交點(diǎn)即為F點(diǎn).此時(shí)PD+PE=BE最小,而BE是等邊△ABE的邊,BE=AB,由正方形ABCD的面積為12,可求出AB的長,從而得出結(jié)果;
(4)作DH⊥AC垂足為H與AG交于點(diǎn)E,點(diǎn)H關(guān)于AG的對稱點(diǎn)為F,此時(shí)EF+ED最小=DH,先證明△ADC是等邊三角形,在RT△DCH中利用勾股定理即可解決問題.
(1)取點(diǎn)A關(guān)于x軸對稱的點(diǎn)A′,連接A′B,交x軸于P,作BH⊥x軸于H,
則此時(shí)PA+PB的值最小,
∵OA′=OA=1,BH=1,BH∥OA′,
∴OP=PH=1,
∴點(diǎn)P的橫坐標(biāo)是1,
PA+PB=A′B=,
故答案為:1;2;
(2)∵四邊形ABCD是正方形,
∴AC垂直平分BD,
∴PB=PD,
由題意易得:PB+PE=PD+PE=DE,
在△ADE中,根據(jù)勾股定理得,DE=;
(3)連接BD,與AC交于點(diǎn)F.
∵點(diǎn)B與D關(guān)于AC對稱,
∴PD=PB,
∴PD+PE=PB+PE=BE最。
∵正方形ABCD的面積為12,
∴AB=2,
又∵△ABE是等邊三角形,
∴BE=AB=2,
故所求最小值為2.
(4)如圖作DH⊥AC垂足為H與AG交于點(diǎn)E,
∵四邊形ABCD是菱形,
∵AB=AD=CD=BC=8,
∵∠B=60°,
∴∠ADC=∠B=60°,
∴△ADC是等邊三角形,
∵AG是中線,
∴∠GAD=∠GAC
∴點(diǎn)H關(guān)于AG的對稱點(diǎn)F在AD上,此時(shí)EF+ED最小=DH.
在RT△DHC中,∵∠DHC=90°,DC=6,∠CDH=∠ADC=30°,
∴CH=DC=4,DH=,
∴EF+DE的最小值=DH=4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是( )
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題:
是一個(gè)無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分無法全部寫出來,但是我們可以想辦法把它表示出來.因?yàn)?/span>,所以的整數(shù)部分為,將減去其整數(shù)部分后,得到的差就是小數(shù)部分,于是的小數(shù)部分為.
(1)求出的整數(shù)部分和小數(shù)部分:
(2)求出的整數(shù)部分和小數(shù)部分;
(3)如果的整數(shù)部分是,小數(shù)部分是,求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與軸,軸分別交于,兩點(diǎn),以為直角頂點(diǎn)在第二象限作等腰.
(1)求點(diǎn)的坐標(biāo),并求出直線的關(guān)系式;
(2)如圖,直線交軸于,在直線上取一點(diǎn),連接,若,求證:.
(3)如圖,在(1)的條件下,直線交軸于點(diǎn),是線段上一點(diǎn),在軸上是否存在一點(diǎn),使面積等于面積的一半?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AE⊥BC于E,將△ABE沿AE所在直線翻折得△AEF,若AB=2,∠B=45°,則△AEF與菱形ABCD重疊部分(陰影部分)的面積為( ).
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】第十五屆中國“西博會”將于2014年10月底在成都召開,現(xiàn)有20名志愿者準(zhǔn)備參加某分會場的工作,其中男生8人,女生12人.
(1)若從這20人中隨機(jī)選取一人作為聯(lián)絡(luò)員,求選到女生的概率;
(2)若該分會場的某項(xiàng)工作只在甲、乙兩人中選一人,他們準(zhǔn)備以游戲的方式?jīng)Q定由誰參加,游戲規(guī)則如下:將四張牌面數(shù)字分別為2、3、4、5的撲克牌洗勻后,數(shù)字朝下放于桌面,從中任取2張,若牌面數(shù)字之和為偶數(shù),則甲參加,否則乙參加.試問這個(gè)游戲公平嗎?請用樹狀圖或列表法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知PA、PB是⊙O的切線,A、B分別為切點(diǎn),∠OAB=30°.
(1)∠APB=_____;
(2)當(dāng)OA=2時(shí),AP=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,于點(diǎn).
(1)如圖1,點(diǎn),分別在,上,且,當(dāng),時(shí),求線段的長;
(2)如圖2,點(diǎn),分別在,上,且,求證:;
(3)如圖3,點(diǎn)在的延長線上,點(diǎn)在上,且,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD在平面直角坐標(biāo)系中的位置如圖所示,對角線AC與BD的交點(diǎn)E恰好在y軸上,過點(diǎn)D和BC的中點(diǎn)H的直線交AC于點(diǎn)F,線段DE,CD的長是方程x2﹣9x+18=0的兩根,請解答下列問題:
(1)求點(diǎn)D的坐標(biāo);
(2)若反比例函數(shù)y=(k≠0)的圖象經(jīng)過點(diǎn)H,則k= ;
(3)點(diǎn)Q在直線BD上,在直線DH上是否存在點(diǎn)P,使以點(diǎn)F,C,P,Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com