【題目】如圖,將一把兩邊都帶有刻度的直尺放在半圓形紙片上,使其一邊經過圓心O,另一邊所在直線與半圓相交于點D、E,量出半徑OC=5cm,弦DE=8cm,求直尺的寬度.
科目:初中數(shù)學 來源: 題型:
【題目】為籌備迎新生晚會,同學們設計了一個圓筒形燈罩,底色漆成白色,然后纏繞紅色油紙.如圖,已知圓筒高108cm,其圓筒底面周長為36cm,如果在表面纏繞油紙4圈,應裁剪油紙的最短為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題提出
(1)如圖①,在正方形ABCD中,對角線AC=8,則正方形ABCD的面積為 ;
問題探究
(2)如圖②,在四邊形ABCD中,AD=AB,∠DAB=∠DCB=90°,∠ADC+∠ABC=180°,若四邊形ABCD的面積為8,求對角線AC的長;
問題解決
(3)如圖③,四邊形ABCD是張叔叔要準備開發(fā)的菜地示意圖,其中邊AD和AB是準備用磚來砌的磚墻,且滿足AD=AB,∠DAB=90°,邊DC和CB是準備用現(xiàn)有的長度分別為3米和7米的竹籬笆來圍成的籬笆墻,即DC=3米,CB=7米.按照這樣的想法,張叔叔圍成的菜園里對角線AC的長是否存在最大值呢?若存在,求出這個最大值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=AC,CF⊥AB于F,BE⊥AC于E,CF與BE交于點D.有下列結論:
①△ABE≌△ACF;②△BDF≌△CDE;③點D在∠BAC的平分線上;④點C在AB的中垂線上.
以上結論正確的有( 。﹤.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),E是直線AB、CD內部一點,AB∥CD,連接EA、ED.
(1)探究:
①若∠A=30°,∠D=40°,則∠AED等于多少度?
②若∠A=20°,∠D=60°,則∠AED等于多少度?
③在圖(1)中∠AED、∠EAB、∠EDC有什么數(shù)量關系,并證明你的結論.
(2)拓展:如圖(2),射線FE與矩形ABCD的邊AB交于點E,與邊CD交于點F,①②③④分別是被射線FE隔開的四個區(qū)域(不含邊界,其中③④位于直線AB的上方),P是位于以上四個區(qū)域上點,猜想:∠PEB、∠PFC、∠EPF之間的關系.(不要求證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線 y=ax2+bx+c 與 x 軸交于A(1,0),B(-3,0),與 y 軸交于C(0,3),頂點是G.
(1)求拋物線的的解析式及頂點坐標G.
(2)如圖1,點D(x,y)是線段BG上的動點(不與B,G重合),DE⊥x軸于E,設四邊形OEDC的面積為S,求S與x之間的函數(shù)關系式,并求S的最大值.
(3)如圖2,將拋物線 y=ax2+bx+c 向下平移 k 個單位,平移后的頂點式 G' ,與 x 軸的交點是 A',B' .若△A'B'G' 是直角三角形,求 k 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知是的平分線,點是射線上一點,點C、D分別在射線、上,連接PC、PD.
(1)發(fā)現(xiàn)問題
如圖①,當,時,則PC與PD的數(shù)量關系是________.
(2)探究問題
如圖②,點C、D在射線OA、OB上滑動,且∠AOB=90°,∠OCP+∠ODP=180°,當時,PC與PD在(1)中的數(shù)量關系還成立嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD繞點A旋轉至矩形AB′C′D′位置.此時AC′的中點恰好與點D重合,AB′交CD于點E,若AB=3,則△AEC的面積為( )
A.3
B.
C.2
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com