【題目】如圖,已知△ABC三個內角的平分線交于點O,點D在CA的延長線上,且DC=BC,AD=AO,若∠BAC=80°,則∠BCA的度數(shù)為 .
【答案】60°.
【解析】
試題可證明△COD≌△COB,得出∠D=∠CBO,再根據(jù)∠BAC=80°,得∠BAD=100°,由角平分線可得∠BAO=40°,從而得出∠DAO=140°,根據(jù)AD=AO,可得出∠D=20°,即可得出∠CBO=20°,則∠ABC=40°,最后算出∠BCA=60°
試題解析:∵△ABC三個內角的平分線交于點O,
∴∠ACO=∠BCO,
在△COD和△COB中,
,
∴△COD≌△COB,
∴∠D=∠CBO,
∵∠BAC=80°,
∴∠BAD=100°,
∴∠BAO=40°,
∴∠DAO=140°,
∵AD=AO,∴∠D=20°,
∴∠CBO=20°,
∴∠ABC=40°,
∴∠BCA=60°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平行四邊形ABCD中,點E在邊AD上,以BE為折痕,將△ABE向上翻折,點A正好落在CD上的點F,若△FDE的周長為7,△FCB的周長為19,求FC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形 ABCD 中, AB = a, BC = b, a > b .以 AB 邊為軸將長方形旋轉一周形成 圓柱體甲,再以 BC 邊為軸將長方形旋轉一周形成圓柱體乙.記兩個圓柱體的體積分別為 V甲 ,V乙 ,側面積分別為 S甲, S乙 ,則下列正確的是( )
A. V甲 > V乙 , S甲=S乙
B. V甲 < V乙 , S甲= S乙
C. V甲= V乙 , S甲= S乙
D. V甲 > V乙 , S甲 < S乙
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,OA=2,OB=4,以A點為頂點、AB為腰在第三象限作等腰Rt△ABC.
(1)求C點的坐標;
(2)如圖②,OA=2,P為y軸負半軸上一個動點,當P點在y軸負半軸向下運動時,以P為頂點,PA為腰作等腰Rt△APD,過D作DE⊥x軸于E點,求OP-DE的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點H,點G在弧BD上,連接AG,交CD于點K,過點G的直線交CD延長線于點E,交AB延長線于點F,且EG=EK.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為13,CH=12,AC∥EF,求OH和FG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:拋物線y=ax2﹣2(a﹣1)x+a﹣2(a>0).
(1)求證:拋物線與x軸有兩個交點;
(2)設拋物線與x軸有兩個交點的橫坐標分別為x1 , x2 , (其中x1>x2).若y是關于a的函數(shù),且y=ax2+x1 , 求這個函數(shù)的表達式;
(3)在(2)的條件下,結合函數(shù)的圖象回答:若使y≤﹣3a2+1,則自變量a的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知動點P在函數(shù)(x>0)的圖象上運動,PM⊥x軸于點M,PN⊥y軸于點N,線段PM、PN分別與直線AB:y=﹣x+1交于點E,F,則AFBE的值為( )
A. 4 B. 2 C. 1 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為增強居民節(jié)約用水意識,某市在2018年開始對供水范圍內的居民用水實行“階梯收費”,具體收費標準如下表:
某戶居民四月份用水10 m3時,繳納水費23元.
(1) 求a的值;
(2) 若該戶居民五月份所繳水費為71元,求該戶居民五月份的用水量.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABC=90°,D、E分別在BC、AC上,AD⊥DE,且AD=DE,點F是AE的中點,FD、AB的延長線相交于點M,連接MC.
(1)求證:∠FMC=∠FCM;
(2)將條件中的AD⊥DE與(1)中的結論互換,其他條件不變,命題是否正確?請給出理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com