【題目】如圖,已知ABC三個內角的平分線交于點O,點D在CA的延長線上,且DC=BC,AD=AO,若BAC=80°,則BCA的度數(shù)為   

【答案】60°.

【解析】

試題可證明COD≌△COB,得出D=CBO,再根據(jù)BAC=80°,得BAD=100°,由角平分線可得BAO=40°,從而得出DAO=140°,根據(jù)AD=AO,可得出D=20°,即可得出CBO=20°,則ABC=40°,最后算出BCA=60°

試題解析:ABC三個內角的平分線交于點O,

∴∠ACO=BCO,

COD和COB中,

,

∴△COD≌△COB,

∴∠D=CBO,

∵∠BAC=80°,

∴∠BAD=100°,

∴∠BAO=40°,

∴∠DAO=140°,

AD=AO,∴∠D=20°,

∴∠CBO=20°,

∴∠ABC=40°,

∴∠BCA=60°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平行四邊形ABCD中,點E在邊AD上,以BE為折痕,將△ABE向上翻折,點A正好落在CD上的點F,若△FDE的周長為7,△FCB的周長為19,求FC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形 ABCD 中, AB = a, BC = b, a > b . AB 邊為軸將長方形旋轉一周形成 圓柱體甲,再以 BC 邊為軸將長方形旋轉一周形成圓柱體乙.記兩個圓柱體的體積分別為 V ,V ,側面積分別為 S, S ,則下列正確的是( )

A. V > V , S=S

B. V < V , S= S

C. V= V , S= S

D. V > V , S < S

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,OA=2,OB=4,以A點為頂點、AB為腰在第三象限作等腰RtABC.

(1)C點的坐標;

(2)如圖②,OA=2,Py軸負半軸上一個動點,當P點在y軸負半軸向下運動時,以P為頂點,PA為腰作等腰RtAPD,過DDEx軸于E點,求OP-DE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點H,點G在弧BD上,連接AG,交CD于點K,過點G的直線交CD延長線于點E,交AB延長線于點F,且EG=EK.

(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為13,CH=12,AC∥EF,求OH和FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:拋物線y=ax2﹣2(a﹣1)x+a﹣2(a>0).
(1)求證:拋物線與x軸有兩個交點;
(2)設拋物線與x軸有兩個交點的橫坐標分別為x1 , x2 , (其中x1>x2).若y是關于a的函數(shù),且y=ax2+x1 , 求這個函數(shù)的表達式;
(3)在(2)的條件下,結合函數(shù)的圖象回答:若使y≤﹣3a2+1,則自變量a的取值范圍為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知動點P在函數(shù)x0的圖象上運動,PMx軸于點M,PNy軸于點N,線段PM、PN分別與直線ABy=x+1交于點E,F,AFBE的值為(  )

A. 4 B. 2 C. 1 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為增強居民節(jié)約用水意識,某市在2018年開始對供水范圍內的居民用水實行“階梯收費”,具體收費標準如下表:

某戶居民四月份用水10 m3時,繳納水費23元.

(1) a的值;

(2) 若該戶居民五月份所繳水費為71元,求該戶居民五月份的用水量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABC=90°,D、E分別在BCAC上,ADDE,且ADDE,點FAE的中點,FD、AB的延長線相交于點M,連接MC

(1)求證:∠FMC=∠FCM

(2)將條件中的ADDE(1)中的結論互換,其他條件不變,命題是否正確?請給出理由.

查看答案和解析>>

同步練習冊答案