如圖,∠MON=90°,點A、B分別在射線OM、ON上移動,BD是∠NBA的平分線,BD的反向延長線與∠BAO的平分線相交于點C.

試猜想:∠ACB的大小是否隨A、B的移動發(fā)生變化?如果保持不變,請給出證明;如果隨點A、B的移動發(fā)生變化,請給出變化范圍.

 

 

答案:
解析:

答案:解:∠C的大小不會隨A、B的移動而發(fā)生變化.理由如下:

證明:∵∠MON=90°∴∠ABO+∠BAC+∠CAO=90°.

∵BD是∠NBA的平分線,∴∠NBD=∠DBA令為x.

∠NBD+∠DBA=180°-∠ABO.∴.

∵CA平分∠BAO.∴∠BAC=∠CAO令為y.∴∠AB0 = 90°- 2y.

 


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

11、如圖,∠MON內有一點P,PP1、PP2分別被OM、ON垂直平分,P1P2與OM、ON分別交于點A、B.若P1P2=10cm,則△PAB的周長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•濟南)如圖,∠MON=90°,矩形ABCD的頂點A、B分別在邊OM,ON上,當B在邊ON上運動時,A隨之在邊OM上運動,矩形ABCD的形狀保持不變,其中AB=2,BC=1,運動過程中,點D到點O的最大距離為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•高要市二模)已知:如圖,∠MON=45°,OA1=1,作正方形A1B1C1A2,面積記作S1;再作第二個正方形A2B2C2A3,面積記作S2;繼續(xù)作第三個正方形A3B3C3A4,面積記作S3;點A1、A2、A3、A4…在射線ON上,點B1、B2、B3、B4…在射線OM上,…依此類推,則第6個正方形的面積S6是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,∠MON=43°,點A在射線OM上,動點P在射線ON上滑動,要使△AOP為等腰三角形,那么滿足條件的點P共有(  )

查看答案和解析>>

同步練習冊答案