【題目】兩個三角板ABC,DEF,按如圖所示的位置擺放,點B與點D重合,邊AB與邊DE在同一條直線上(假設(shè)圖形中所有的點,線都在同一平面內(nèi)).其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.現(xiàn)固定三角板DEF,將三角板ABC沿射線DE方向平移,當(dāng)點C落在邊EF上時停止運動.設(shè)三角板平移的距離為x(cm),兩個三角板重疊部分的面積為y(cm2).
(1)當(dāng)點C落在邊EF上時,x=cm;
(2)求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)設(shè)邊BC的中點為點M,邊DF的中點為點N.直接寫出在三角板平移過程中,點M與點N之間距離的最小值.
【答案】
(1)15
(2)
解:①當(dāng)0≤x<6時,如圖2所示.
,
∠GDB=60°,∠GBD=30°,DB=x,得
DG= x,BG= x,重疊部分的面積為y= DGBG= × x× x= x2
②當(dāng)6≤x<12時,如圖3所示.
,
BD=x,DG= x,BG= x,BE=x﹣6,EH= (x﹣6).
重疊部分的面積為y=S△BDG﹣S△BEH= DGBG﹣ BEEH,
即y= × x× x﹣ (x﹣6) (x﹣6)
化簡,得y=﹣ x2+2 x﹣6 ;
③當(dāng)12<x≤15時,如圖4所示.
,
AC=6,BC=6 ,BD=x,BE=(x﹣6),EG= (x﹣6),
重疊部分的面積為y=S△ABC﹣S△BEG= ACBC﹣ BEEG,即y= ×6×6 ﹣ (x﹣6) (x﹣6),
化簡,得y=18 ﹣ (x2﹣12x+36)=﹣ x2+2 x+12 ;
綜上所述:y=
(3)
解:如圖5所示作NG⊥DE于G點.
,
點M在NG上時MN最短,
NG是△DEF的中位線,
NG= EF= .
MB= CB=3 ,∠B=30°,
MG= MB= ,
MN最小=3 ﹣ =
【解析】解:(1)如圖1所示:作CG⊥AB于G點.
,
在Rt△ABC中,由AC=6,∠ABC=30,得
BC= =6 .
在Rt△BCG中,BG=BCcos30°=9.
四邊形CGEH是形,
CH=GE=BG+BE=9+6=15cm,
所以答案是:15;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù)1,2,3,…,n(從左往右數(shù),第1個數(shù)是1,第2個數(shù)是2,第3個數(shù)是3,依此類推,第n個數(shù)是n).設(shè)這組數(shù)據(jù)的各數(shù)之和是s,中位數(shù)是k,則s= (用只含有k的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形OAB的一邊OA在x軸上,雙曲線y= 在第一象限內(nèi)的圖象經(jīng)過OB邊的中點C,則點B的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖②的形狀拼成一個正方形.
(1)將圖②中的陰影部分面積用2種方法表示可得一個等式,求等式。
(2)若m+2n=7,mn=3,利用(1)的結(jié)論求m﹣2n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一些體積為1的小立方體恰好可以組成體積為1的大立方體,把所有這些小立方體一個接一個向上摞起來,大概有多高呢?以下選項中最接近這一高度的是( )
A. 蓮花山望海觀音的高度 B. 滴水巖森林公園青蘿嶂高度
C. 廣州塔的高度 D. 國際航班飛行高度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的菱形ABCD中,∠A=60°,M是AD邊的中點,點N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長度的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△OAB在直角坐標(biāo)系中的位置如圖,點A在第一象限,點B在x軸正半軸上,OA=OB=6,∠AOB=30°.
(1)求點A、B的坐標(biāo);
(2)開口向上的拋物線經(jīng)過原點O和點B,設(shè)其頂點為E,當(dāng)△OBE為等腰直角三角形時,求拋物線的解析式;
(3)設(shè)半徑為2的⊙P與直線OA交于M、N兩點,已知MN=2 ,P(m,2)(m>0),求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com