【題目】已知關(guān)于x的二次函數(shù)y=ax2-(2a+2)x+b(a≠0)在x=0和x=6時(shí)函數(shù)值相等.
(1)求a的值;
(2)若該二次函數(shù)的圖象與直線(xiàn)y=-2x的一個(gè)交點(diǎn)為(2,m),求它的解析式;
(3)在(2)的條件下,直線(xiàn)y=-2x-4與x軸,y軸分別交于A,B,將線(xiàn)段AB向右平移n(n>0)個(gè)單位,同時(shí)將該二次函數(shù)在2≤x≤7的部分向左平移n個(gè)單位后得到的圖象記為G,請(qǐng)結(jié)合圖象直接回答,當(dāng)圖象G與平移后的線(xiàn)段有公共點(diǎn)時(shí),n的取值范圍.
【答案】(1) x=3,a=(2) y=x2-3x(3)n=1或2≤n≤4,
【解析】
(1)可得二次函數(shù)x=3,可求得a的值;
(2)先求出交點(diǎn)為(2,-4),代入(1)解析式可得二次函數(shù)的解析式;
(3)可先求得A、B點(diǎn)坐標(biāo)及直線(xiàn)y=-2x-4向右平移n(n>0)個(gè)單位的表達(dá)式,二次函數(shù)在2≤x≤7的部分向左平移n個(gè)單位后得到的圖象記為G,可得G的函數(shù)表達(dá)式,兩者聯(lián)立的方程有解,可得n的取值范圍.
(1)∵二次函數(shù)在x=0和x=6時(shí)函數(shù)值相等,
∴該二次函數(shù)的對(duì)稱(chēng)軸為x=3
∴x=,
解并檢驗(yàn)得:a=.
(2)∵直線(xiàn)y=-2x過(guò)點(diǎn)(2,m),
∴m=-2×2=-4,
由題意,點(diǎn)(2,-4)在拋物線(xiàn)上,
且由(1)a=,拋物線(xiàn)為y=x2-3x+b,
可得:2-6+b=-4,
解得b=0,
∴拋物線(xiàn)的解析式為y=x2-3x.
(3)①如圖:
當(dāng)n=1時(shí),一次函數(shù)為(-1≤x≤1),G為(1≤x≤6),有公共交點(diǎn)(1,-4),故n=1滿(mǎn)足條件;
②
當(dāng)n=2時(shí), (0≤x≤2), G為(0≤x≤5), 有公共交點(diǎn)(2,-4),故n=2滿(mǎn)足條件
③
當(dāng)n=4時(shí), (2≤x≤4), G為(-2≤x≤3),此時(shí)有公共點(diǎn)(2,0)
故:n=1或2≤n≤4,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,PD切⊙O于點(diǎn)C,與BA的延長(zhǎng)線(xiàn)交于點(diǎn)D,DE⊥PO交PO延長(zhǎng)線(xiàn)于點(diǎn)E,連接PB,∠EDB=∠EPB.
(1)求證:PB是的切線(xiàn).
(2)若PB=6,DB=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,點(diǎn)P在射線(xiàn)BC上(異于點(diǎn)B、C),直線(xiàn)AP與對(duì)角線(xiàn)BD及射線(xiàn)DC分別交于點(diǎn)F、Q.
(1)若BP=,求∠BAP的度數(shù);
(2)若點(diǎn)P在線(xiàn)段BC上,過(guò)點(diǎn)F作FG⊥CD,垂足為G,當(dāng)△FGC≌△QCP時(shí),求PC的長(zhǎng);
(3)以PQ為直徑作⊙M.
①判斷FC和⊙M的位置關(guān)系,并說(shuō)明理由;
②當(dāng)直線(xiàn)BD與⊙M相切時(shí),直接寫(xiě)出PC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn):()與,軸分別交于,兩點(diǎn),以為邊在直線(xiàn)的上方作正方形,反比例函數(shù)和的圖象分別過(guò)點(diǎn)和點(diǎn).若,則的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙0的直徑,點(diǎn)C在⊙0上,D是中點(diǎn),若∠BAC=70°,求∠C.
下面是小雯的解法,請(qǐng)幫他補(bǔ)充完整:
解:在⊙0中,
∵D是的中點(diǎn)
∴BD=CD.
∴∠1=∠2( )(填推理的依據(jù)).
∵∠BAC=70°,
∴∠2=35°.
∵AB是⊙0的直徑,
∴∠ADB=90°( )(填推理的依據(jù)).
∴∠B=90°-∠2=55°.
∵A、B、C、D四個(gè)點(diǎn)都在⊙0上,
∴∠C+∠B=180°( )(填推理的依據(jù)).
∴∠C=180°-∠B= (填計(jì)算結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李寧準(zhǔn)備完成題目;解二元一次方程組,發(fā)現(xiàn)系數(shù)“□”印刷不清楚.
(1)他把“□”猜成3,請(qǐng)你解二元一次方程組;
(2)張老師說(shuō):“你猜錯(cuò)了”,我看到該題標(biāo)準(zhǔn)答案的結(jié)果x、y是一對(duì)相反數(shù),通過(guò)計(jì)算說(shuō)明原題中“□”是幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(2,y1),B(﹣3,y2),C(﹣5,y3)三個(gè)點(diǎn)都在反比例函數(shù)的圖象上,比較y1,y2,y3的大小,則下列各式正確的是( )
A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y2<y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】京杭大運(yùn)河是世界文化遺產(chǎn).綜合實(shí)踐活動(dòng)小組為了測(cè)出某段運(yùn)河的河寬(岸沿是平行的),如圖,在岸邊分別選定了點(diǎn)A、B和點(diǎn)C、D,先用卷尺量得AB=160m,CD=40m,再用測(cè)角儀測(cè)得∠CAB=30°,∠DBA=60°,求該段運(yùn)河的河寬(即CH的長(zhǎng)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】孔明同學(xué)對(duì)本校學(xué)生會(huì)組織的“為貧困山區(qū)獻(xiàn)愛(ài)心”自愿捐款活動(dòng)進(jìn)行抽樣調(diào)查,得到了一組學(xué)生捐款情況的數(shù)據(jù).如圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計(jì)圖,圖中從左到右各長(zhǎng)方形的高度之比為3:4:5:10:8,又知此次調(diào)查中捐款30元的學(xué)生一共16人.
(1)孔明同學(xué)調(diào)查的這組學(xué)生共有_______人;
(2)這組數(shù)據(jù)的眾數(shù)是_____元,中位數(shù)是_____元;
(3)若該校有2000名學(xué)生,都進(jìn)行了捐款,估計(jì)全校學(xué)生共捐款多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com