如圖,拋物線y=ax2+bx+3與x軸相交于點A(﹣1,0)、B(3,0),與y軸相交于點C,點P為線段OB上的動點(不與O、B重合),過點P垂直于x軸的直線與拋物線及線段BC分別交于點E、F,點D在y軸正半軸上,OD=2,連接DE、OF.
(1)求拋物線的解析式;
(2)當四邊形ODEF是平行四邊形時,求點P的坐標;
(3)過點A的直線將(2)中的平行四邊形ODEF分成面積相等的兩部分,求這條直線的解析式.(不必說明平分平行四邊形面積的理由)
解:(1)∵點A(﹣1,0)、B(3,0)在拋物線y=ax2+bx+3上,
∴,解得。
∴拋物線的解析式為:y=﹣x2+2x+3。
(2)在拋物線解析式y(tǒng)=﹣x2+2x+3中,令x=0,得y=3,∴C(0,3)。
設直線BC的解析式為y=kx+b,
將B(3,0),C(0,3)坐標代入得:,解得。
∴直線BC的解析式為y=﹣x+3。
設E點坐標為(x,﹣x2+2x+3),則P(x,0),F(xiàn)(x,﹣x+3)。
∴EF=yE﹣yF=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x。
∵四邊形ODEF是平行四邊形,∴EF=OD=2。
∴﹣x2+3x=2,即x2﹣3x+2=0,解得x=1或x=2。
∴P點坐標為(1,0)或(2,0)。
(3)平行四邊形是中心對稱圖形,其對稱中心為兩條對角線的交點(或對角線的中點),過對稱中心的直線平分平行四邊形的面積,因此過點A與ODEF對稱中心的直線平分ODEF的面積。
①當P(1,0)時,點F坐標為(1,2),
又D(0,2),
設對角線DF的中點為G,則G(,2)。
設直線AG的解析式為y=k1x+b1,
將A(﹣1,0),G(,2)坐標代入得:,解得。
∴所求直線的解析式為:。
②當P(2,0)時,點F坐標為(2,1),又D(0,2)。
設對角線DF的中點為G,則G(1,)。
設直線AG的解析式為y=k2x+b2,
將A(﹣1,0),G(1,)坐標代入得:,解得。
∴所求直線的解析式為。
綜上所述,所求直線的解析式為或。
解析試題分析:(1)利用待定系數(shù)法求出拋物線的解析式。
(2)平行四邊形的對邊相等,因此EF=OD=2,據(jù)此列方程求出點P的坐標。
(3)利用中心對稱的性質求解:平行四邊形是中心對稱圖形,其對稱中心為兩條對角線的交點(或對角線的中點),過對稱中心的直線平分平行四邊形的面積,因此過點A與ODEF對稱中心的直線平分ODEF的面積。
科目:初中數(shù)學 來源: 題型:解答題
如圖,拋物線與直線交于C,D兩點,其中點C在y軸上,點D的坐標為。點P是y軸右側的拋物線上一動點,過點P作軸于點E,交CD于點F.
(1)求拋物線的解析式;
(2)若點P的橫坐標為m,當m為何值時,以O,C,P,F(xiàn)為頂點的四邊形是平行四邊形?請說明理由。
(3)若存在點P,使,請直接寫出相應的點P的坐標
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,矩形OABC的邊OA、OC分別在y軸和x軸的正半軸上,且長分別為m、4m(m>0),D為邊AB的中點,一拋物線l經過點A、D及點M(﹣1,﹣1﹣m).
(1)求拋物線l的解析式(用含m的式子表示);
(2)把△OAD沿直線OD折疊后點A落在點A′處,連接OA′并延長與線段BC的延長線交于點E,若拋物線l與線段CE相交,求實數(shù)m的取值范圍;
(3)在滿足(2)的條件下,求出拋物線l頂點P到達最高位置時的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知拋物線與x軸交于點A(1,0),B(3,0),且過點C(0,﹣3).
(1)求拋物線的解析式和頂點坐標;
(2)請你寫出一種平移的方法,使平移后拋物線的頂點落在直線y=﹣x上,并寫出平移后拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知拋物線與x軸交于點A,B,AB=2,與y軸交于點C,對稱軸為直線x=2.
(1)求拋物線的函數(shù)表達式;
(2)設P為對稱軸上一動點,求△APC周長的最小值;
(3)設D為拋物線上一點,E為對稱軸上一點,若以點A,B,D,E為頂點的四邊形是菱形,則點D的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知△ABC中,邊BC的長與BC邊上的高的和為20.
(1)寫出△ABC的面積y與BC的長x之間的函數(shù)關系式,并求出面積為48時BC的長;
(2)當BC多長時,△ABC的面積最大?最大面積是多少?
(3)當△ABC面積最大時,是否存在其周長最小的情形?如果存在,請說出理由,并求出其最小周長;如果不存在,請給予說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,頂點為M的拋物線經過點A和x軸正半軸上的點B,AO=OB=2,∠AOB=1200.
(1)求這條拋物線的表達式;
(2)連接OM,求∠AOM的大小;
(3)如果點C在x軸上,且△ABC與△AOM相似,求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標為(-3,0)。
(1)求點B的坐標;
(2)已知,C為拋物線與y軸的交點。
①若點P在拋物線上,且,求點P的坐標;
②設點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖所示,某學校擬建一個含內接矩形的菱形花壇(花壇為軸對稱圖形).矩形的四個頂點分別在菱形四條邊上,菱形ABCD的邊長AB=4米,∠ABC=60°.設AE=x米(0<x<4),矩形EFGH的面積為S米2.
(1)求S與x的函數(shù)關系式;
(2)學校準備在矩形內種植紅色花草,四個三角形內種植黃色花草.已知紅色花草的價格為20元/米2,黃色花草的價格為40元/米2.當x為何值時,購買花草所需的總費用最低,并求出最低總費用(結果保留根號)?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com