已知拋物線y=ax2+bx+c(a≠0)如圖.則abc______0,a-b+c______0,b2-4ac______0.
①∵圖象開口向上,∴a>0;
∵對稱軸x=-
b
2a
<0,∴b>0;
∵圖象與y軸交點在負半軸,∴c<0;
∴abc<0.
②當(dāng)x=-1時,y=a-b+c,根據(jù)圖象知y<0,所以a-b+c<0.
③因為圖象與x軸有兩個交點,所以方程ax2+bx+c=0有兩個不相等的實數(shù)根,則b2-4ac>0.
故答案為:<,<,>.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將拋物線y=x2-4x+4沿y軸向下平移后,所得拋物線與x軸交于點A、B,頂點為C,如果△ABC是等腰直角三角形,那么頂點C的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列各圖是在同一直角坐標(biāo)系內(nèi),二次函數(shù)y=ax2+(a+c)x+c與一次函數(shù)y=ax+c的大致圖象,有且只有一個是正確的,正確的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線y=
k
x
(k≠0)
的兩個分支在第二、四象限內(nèi),則拋物線y=kx2-2x+k2的圖象大致是圖中的(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線C:y=x2+3x-10,將拋物線C平移到C′.若兩條拋物線C,C′關(guān)于直線x=1對稱,則下列平移方法中正確的是( 。
A.將拋物線C向右平移
5
2
個單位
B.將拋物線C向右平移3個單位
C.將拋物線C向右平移5個單位
D.將拋物線C向右平移6個單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,二次函數(shù)y=ax2+bx+c的圖象開口向上,對稱軸為直線x=1,圖象經(jīng)過(3,0),下列結(jié)論中,正確的一項是(  )
A.a(chǎn)bc<0B.2a+b<0C.a(chǎn)-b+c<0D.4ac-b2<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=2x2+bx+c的圖象是由y=2x2的圖象先向左平移2個單位,再向上平移5個單位得到.
(1)求b,c的值;
(2)畫出當(dāng)-3≤x≤0時(1)中的函數(shù)圖象,并根據(jù)圖象說出最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

把拋物線y=x2向右平移1個單位再向下平移2個單位,得到的拋物線是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)圖象的頂點為D,其圖象與x軸的交點A,B的橫坐標(biāo)分別為-1,3,與y軸負半軸交于點C.下面五個結(jié)論:①2a+b=0;②a+b+c>0;③4a+b+c>0;④只有當(dāng)a=
1
2
時,△ABD是等腰直角三角形;⑤使△ACB為等腰三角形的a的值可以有三個.那么,其中正確的結(jié)論是______.

查看答案和解析>>

同步練習(xí)冊答案