【題目】九年一班組織班級聯(lián)歡會,最后進(jìn)入抽獎環(huán)節(jié),每名同學(xué)都有一次抽獎機(jī)會,小強(qiáng)拿出一個箱子說:這個不透明的箱子里裝有紅、白球各1個和若干個黃球,它們除了顏色外其余都相同,誰能同時摸出兩個黃球誰就獲得一等獎.已知任意摸出一個球是黃球的概率為

(1)請直接寫出箱子里有黃球   ;

(2)請用列表或樹狀圖求獲得一等獎的概率.

【答案】(1)2;(2).

【解析】

(1)設(shè)箱子里有黃球x個,根據(jù)概率公式得到,然后解方程即可;

(2)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出同時摸出兩個黃球的結(jié)果數(shù),然后根據(jù)概率公式求解.

解:(1)設(shè)箱子里有黃球x,

根據(jù)題意得=,解得x=2,

即箱子里有黃球2個;

故答案為2;

(2)畫樹狀圖為:

共有12種等可能的結(jié)果數(shù),其中同時摸出兩個黃球的結(jié)果數(shù)為2,

所以獲得一等獎的概率==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明(視為小黑點(diǎn))站在一個高為10米的高臺A上,利用旗桿OM頂部的繩索,劃過90°到達(dá)與高臺A水平距離為17米,高為3米的矮臺B.那么小明在蕩繩索的過程中離地面的最低點(diǎn)的高度MN是(

A.2B.2.2C.2.5D.2.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1,A2,A3…都在x軸上,點(diǎn)B1,B2,B3…都在直線y=x上,OA1=1,且△B1AA2,△B2A2A3,△B3A3A4,…△Bnanan+1…分別是以A1,A2,A3,…An…為直角頂點(diǎn)的等腰直角三角形,則△B10A10A11的面積是( 。

A. 216 B. 217 C. 218 D. 219

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段AB12厘米,動點(diǎn)P2厘米/秒的速度從點(diǎn)A出發(fā)向點(diǎn)B運(yùn)動,動點(diǎn)Q4厘米/秒的速度從點(diǎn)B出發(fā)向點(diǎn)A運(yùn)動.兩點(diǎn)同時出發(fā),到達(dá)各自的終點(diǎn)后停止運(yùn)動.設(shè)兩點(diǎn)之間的距離為s(厘米),動點(diǎn)P的運(yùn)動時間為t秒,則下圖中能正確反映st之間的函數(shù)關(guān)系的是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AC是⊙O的直徑,過點(diǎn)BBEAD,垂足為點(diǎn)EAB平分∠CAE

1)判斷BE與⊙O的位置關(guān)系,并說明理由;

2)若∠ACB=30°,O的半徑為4,請求出圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)一種合金薄板(其厚度忽略不計),這些薄板的形狀均為正方形,邊長(單位:cm)在550之間,每張薄板的成本價(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(單位:元)由基礎(chǔ)價和浮動價兩部分組成,其中基礎(chǔ)價與薄板的大小無關(guān),是固定不變的,浮動價與薄板的邊長成正比例,在營銷過程中得到了表格中的數(shù)據(jù).

薄板的邊長(cm)

20

30

出廠價(元/張)

50

70

(1)求一張薄板的出廠價與邊長之間滿足的函數(shù)關(guān)系式;

(2)40cm的薄板,獲得的利潤是26元(利潤=出廠價﹣成本價).

①求一張薄板的利潤與邊長之間滿足的函數(shù)關(guān)系式;

②當(dāng)邊長為多少時,出廠一張薄板獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,ACBD相交于0AEBDE,CFBDF,則圖中的全等三角形共( 。

A. 5B. 6C. 7D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠DAB=45°,AB=8,點(diǎn)P為線段AB上一動點(diǎn),過點(diǎn)PPEAB交直線ADE,沿PE將∠A折疊,點(diǎn)A的對稱點(diǎn)為點(diǎn)F,連接EF、DF、GF,當(dāng)△CDF為直角三角形時,AP=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點(diǎn)MN,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D,則下列說法中正確的個數(shù)是

ADBAC的平分線;②∠ADC=60°;點(diǎn)DAB的中垂線上;SDACSABC=13

A1 B2 C3 D4

查看答案和解析>>

同步練習(xí)冊答案