(2010•烏魯木齊)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過O(0,0),M(1,1)和N(n,0)
(n≠0)三點(diǎn).
(1)若該函數(shù)圖象頂點(diǎn)恰為M點(diǎn),寫出此時(shí)n的值及y的最大值;
(2)當(dāng)n=-2時(shí),確定這個(gè)二次函數(shù)的解析式,并判斷此時(shí)y是否有最大值;
(3)由(1)、(2)可知,n的取值變化,會影響該函數(shù)圖象的開口方向.請求出n滿足什么條件時(shí),y有最小值.
【答案】分析:(1)M點(diǎn)為頂點(diǎn),則O、N關(guān)于x=1對稱,M點(diǎn)為最大值點(diǎn),由此得出答案;
(2)由于拋物線的圖象經(jīng)過原點(diǎn),故c=0;將M、N兩點(diǎn)坐標(biāo)代入y=ax2+bx聯(lián)立求解,并由解出的a值判斷是否有最大值;
(3)將M、N兩點(diǎn)坐標(biāo)代入y=ax2+bx聯(lián)立得出含a、n的方程,由a>0確定n滿足的條件.
解答:解:(1)由二次函數(shù)圖象的對稱性可知n=2;
y的最大值為1.

(2)由題意得:,
解這個(gè)方程組得:
故這個(gè)二次函數(shù)的解析式為y=;
>0,
∴y沒有最大值;

(3)由題意得:,
整理得:an2+(1-a)n=0,即n(an+1-a)=0;(8分)
∵n≠0,
∴an+1-a=0;
故(1-n)a=1,而n≠1;
若y有最小值,則需a>0,∴1-n>0,即n<1;
∴n<1且n≠0時(shí),y有最小值.
點(diǎn)評:此題主要考查了拋物線的性質(zhì)、二次函數(shù)圖象與系數(shù)的關(guān)系等重要知識點(diǎn),難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2010•烏魯木齊)2010年5月中央召開了新疆工作座談會,為實(shí)現(xiàn)新疆跨越發(fā)展和長治久安,作出了重要戰(zhàn)略決策部署,為此我市抓住機(jī)遇,加快發(fā)展,決定今年投入5億元用于城市基礎(chǔ)設(shè)施維護(hù)和建設(shè),以后逐年增加,計(jì)劃到2012年當(dāng)年用于城市基礎(chǔ)設(shè)施維護(hù)與建設(shè)的資金達(dá)到8.45億元.
(1)從2010年至2012年我市每年投入城市基礎(chǔ)設(shè)施維護(hù)與建設(shè)資金的年平均增長率為
30
30
%;
(2)若2010年至2012年我市每年投入城市基礎(chǔ)設(shè)施維護(hù)和建設(shè)的年平均增長率相同,預(yù)計(jì)我市這三年用于城市基礎(chǔ)設(shè)施維護(hù)和建設(shè)的資金共
19.95
19.95
億元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012學(xué)年人教版中考數(shù)學(xué)第一輪復(fù)習(xí)分式方程專項(xiàng)訓(xùn)練.doc 題型:解答題

(2010烏魯木齊,17,8分)解方程:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年新疆烏魯木齊市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•烏魯木齊)已知點(diǎn)A(-1,y1),B(1,y2),C(2,y3)在反比例函數(shù)y=(k<0)的圖象上,則y1,y2,y3的大小關(guān)系為    (用“>”或“<”連接).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012學(xué)年人教版中考數(shù)學(xué)第一輪復(fù)習(xí)分式方程專項(xiàng)訓(xùn)練 題型:填空題

(2010烏魯木齊,17,8分)解方程:.

 

查看答案和解析>>

同步練習(xí)冊答案