【題目】如圖,正方形ABCD,點P為射線DC上的一個動點,點QAB的中點,連接PQ,DQ,過點PPEDQ于點E

1)請找出圖中一對相似三角形,并證明;

2)若AB4,以點P,E,Q為頂點的三角形與ADQ相似,試求出DP的長.

【答案】1DPE∽△QDA,證明見解析;(2DP=25

【解析】

1)由∠ADC=∠DEP=∠A90可證明△ADQ∽△EPD;

2)若以點P,E,Q為頂點的三角形與△ADQ相似,有兩種情況,當(dāng)△ADQ∽△EPQ時,設(shè)EQx,則EP2x,則DE2x,由△ADQ∽△EPD可得,可求出x的值,則DP可求出;同理當(dāng)△ADQ∽△EQP時,設(shè)EQ2a,則EPa,可得,可求出a的值,則DP可求.

1)△ADQ∽△EPD,證明如下:

PEDQ,

∴∠DEP=∠A90,

∵∠ADC90

∴∠ADQ+∠EDP90,∠EDP+∠DPE90

∴∠ADQ=∠DPE,

∴△ADQ∽△EPD

2)∵AB4,點QAB的中點,

AQBQ2,

DQ,

∵∠PEQ=∠A90,

∴若以點PE,Q為頂點的三角形與△ADQ相似,有兩種情況,

①當(dāng)△ADQ∽△EPQ時,,

設(shè)EQx,則EP2x,則DE2x

由(1)知△ADQ∽△EPD,

,

,

x

DP5

②當(dāng)△ADQ∽△EQP時,設(shè)EQ2a,則EPa

同理可得,

a,

DP

綜合以上可得DP長為25,使得以點P,E,Q為頂點的三角形與△ADQ相似.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,的平分線交于點,過點,分別交于點、,若的周長為18,則的長是( )

A.8B.9C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 某校為了了解學(xué)生的安全意識,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查.根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識分成“淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)”四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖,如圖所示:

根據(jù)以上信息,解答下列問題:

1)這次調(diào)查一共抽取了______名學(xué)生,將條形統(tǒng)計圖補(bǔ)充完整;

2)扇形統(tǒng)計圖中,“較強(qiáng)”層次所占圓心角的大小為______°;

3)若該校有3200名學(xué)生,現(xiàn)要對安全意識為“淡薄”、“一般”的學(xué)生強(qiáng)化安全教育,根據(jù)調(diào)查結(jié)果,請你估計全校需要強(qiáng)化安全教育的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線分別與軸、軸交于點,是反比例函數(shù)的圖象上位于直線下方的點,過點分別作軸、軸的垂線,垂足分別為點,交直線于點,,的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 x軸交于點A(-1,0),點B(3,0),與y軸正半軸交于點C.

(1)拋物線的解析式為________

(2)P為拋物線上一點,連結(jié)AC,PC,若∠PCO=3ACO,點P的坐標(biāo)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù))

(1)該函數(shù)的圖像與軸公共點的個數(shù)是(

A.0 B.1 C.2 D.1或2

(2)求證:不論為何值,該函數(shù)的圖像的頂點都在函數(shù)的圖像上.

(3)當(dāng)時,求該函數(shù)的圖像的頂點縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=﹣kx+k與反比例函數(shù)y=﹣(k≠0)在同一坐標(biāo)系中的圖象可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n0)的圖象在第二象限交于點C.CDx軸,垂足為D,若OB=2OA=3OD=12.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)記兩函數(shù)圖象的另一個交點為E,求CDE的面積;

(3)直接寫出不等式kx+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角坐標(biāo)系中,點A的坐標(biāo)為(1,0),以O(shè)A為邊在第四象限內(nèi)作等邊△AOB,點C為x軸的正半軸上一動點(OC>1),連接BC,以BC為邊在第四象限內(nèi)作等邊△CBD,直線DA交y軸于點E.

(1)試問△OBC與△ABD全等嗎?并證明你的結(jié)論;

(2)隨著點C位置的變化,點E的位置是否會發(fā)生變化?若沒有變化,求出點E的坐標(biāo);若有變化,請說明理由;

(3)如圖2,以O(shè)C為直徑作圓,與直線DE分別交于點F、G,設(shè)AC=m,AF=n,用含n的代數(shù)式表示m

查看答案和解析>>

同步練習(xí)冊答案