【題目】如圖,是平行四邊形,對角線軸正半軸上,位于第一象限的點(diǎn)和第二象限的點(diǎn)分別在雙曲線的一個(gè)分支上,分別過點(diǎn)軸的垂線段,垂足分別為點(diǎn),則以下結(jié)論:

; ②陰影部分面積是

③當(dāng)時(shí),; ④若是菱形,則兩雙曲線既關(guān)于x軸對稱,也關(guān)于y軸對稱.

其中正確結(jié)論的個(gè)數(shù)是

A. 個(gè)B. 個(gè)C. 個(gè)D. 個(gè)

【答案】B

【解析】

AEy軸于點(diǎn)E,CFy軸于點(diǎn)F,根據(jù)平行四邊形的性質(zhì)得SAOB=SCOB,利用三角形面積公式得到AE=CF,則有OM=ON,再利用反比例函數(shù)k的幾何意義和三角形面積公式得到SAOM=|k1|=OMAMSCON=|k2|=ONCN,所以有;由SAOM=|k1|,SCON=|k2|,得到S陰影部分=SAOM+SCON=|k1|+|k2|=k1-k2);當(dāng)∠AOC=90°,得到四邊形OABC是矩形,由于不能確定OAOC相等,則不能判斷AOM≌△CNO,所以不能判斷AM=CN,則不能確定|k1|=|k2|;若OABC是菱形,根據(jù)菱形的性質(zhì)得OA=OC,可判斷RtAOMRtCNO,則AM=CN,所以|k1|=|k2|,即k1=-k2,根據(jù)反比例函數(shù)的性質(zhì)得兩雙曲線既關(guān)于x軸對稱,也關(guān)于y軸對稱.

AEy軸于ECFy軸于F,如圖,

∵四邊形OABC是平行四邊形,

SAOB=SCOB

AE=CF

OM=ON,

SAOM=|k1|=OMAM,SCON=|k2|=ONCN,

,故①正確;

SAOM=|k1|,SCON=|k2|

S陰影部分=SAOMspan>+SCON=|k1|+|k2|),

k10,k20,

S陰影部分=k1-k2),故②正確;

當(dāng)∠AOC=90°,

∴四邊形OABC是矩形,

∴不能確定OAOC相等,

OM=ON,

∴不能判斷AOM≌△CNO,

∴不能判斷AM=CN

∴不能確定|k1|=|k2|,故③錯(cuò)誤;

OABC是菱形,則OA=OC

OM=ON,

RtAOMRtCNO,

AM=CN

|k1|=|k2|,

k1=-k2,

∴兩雙曲線既關(guān)于x軸對稱,也關(guān)于y軸對稱,故④正確.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一臺起重機(jī),他的機(jī)身高AC21m,吊桿AB長為36m,吊桿與水平線的夾角∠BAD可從30°升到80°.求這臺起重機(jī)工作時(shí),吊桿端點(diǎn)B離地面CE的最大高度和離機(jī)身AC的最大水平距離(結(jié)果精確到0.1m). (參考數(shù)據(jù):sin80°≈0.98,cos80°≈0.17,tan33°≈5.67,≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖是由5個(gè)相同的小正方體組成的幾何體,其主視圖和左視圖相同的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3,BC4,O為矩形ABCD的中心,以D為圓心1為半徑作⊙D,P為⊙D上的一個(gè)動(dòng)點(diǎn),連接AP,OP,則AOP面積的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BC的垂直平分線交它的外接圓于D、E兩點(diǎn).若∠B=24°,∠C=106°,則 的度數(shù)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線軸交于點(diǎn),與軸交于點(diǎn)拋物線經(jīng)過點(diǎn).

1)求點(diǎn)的坐標(biāo)和拋物線的解析式.

2軸上一個(gè)動(dòng)點(diǎn),過點(diǎn)垂直于軸的直線與直線和拋物線分別交于點(diǎn)、.

①點(diǎn)在線段上運(yùn)動(dòng),若以、、為頂點(diǎn)的三角形與相似,求點(diǎn)的坐標(biāo);

②點(diǎn)軸上自由運(yùn)動(dòng),若三個(gè)點(diǎn)、、中恰有一點(diǎn)是其他兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),則稱、、三點(diǎn)為共諧點(diǎn)”.請直接寫出使得、、三點(diǎn)成為共諧點(diǎn)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù)y1=kx與反比例函數(shù)x0)交于點(diǎn)A2,3),ABx軸于點(diǎn)B,平移直線y1=kx使其經(jīng)過點(diǎn)B,得到直線y2,y2y軸交于點(diǎn)C,與交于點(diǎn)D

1)求正比例函數(shù)y1=kx及反比例函數(shù)的解析式;

2)求點(diǎn)D的坐標(biāo);

3)求△ACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一筆直的海岸線l上有相距2kmA,B兩個(gè)觀測站,B站在A站的正東方向上,從A站測得船C在北偏東60°的方向上,從B站測得船C在北偏東30°的方向上,則船C到海岸線l的距離為多少千米?(參考數(shù)據(jù):1.732,結(jié)果保留小數(shù)點(diǎn)后一位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一種適用于筆記本電腦的鋁合金支架,邊可繞點(diǎn)開合,在邊上有一固定點(diǎn),支柱可繞點(diǎn)轉(zhuǎn)動(dòng),邊上有六個(gè)卡孔,其中離點(diǎn)最近的卡孔為,離點(diǎn)最遠(yuǎn)的卡孔為.當(dāng)支柱端點(diǎn)放入不同卡孔內(nèi),支架的傾斜角發(fā)生變化.將電腦放在支架上,電腦臺面的角度可達(dá)到六檔調(diào)節(jié),這樣更有利于工作和身體健康.現(xiàn)測得的長為,,支柱.

(1)當(dāng)支柱的端點(diǎn)放在卡孔處時(shí),求的度數(shù);

(2)當(dāng)支柱的端點(diǎn)放在卡孔處時(shí),,若相鄰兩個(gè)卡孔的距離相同,求此間距.(結(jié)果精確到十分位)

查看答案和解析>>

同步練習(xí)冊答案