【題目】已知:△ABC,△BDE為等邊三角形,CB、D三點共線。

求證:(1AD=EC;

2BP=BQ

3)△BPQ為等邊三角形。

【答案】1)見解析;(2)見解析;(3)見解析.

【解析】

1)根據(jù)等邊三角形的性質(zhì)得到ABBC,BDBE,∠ABC=∠DBE60°,從而證得ABDCBE,即可得到AD=EC;

2)根據(jù)ABDCBE,∠ABE=60°,可通過ASA證明PBEQBD,所以BP=BQ;

3)由BP=BQ,∠ABE=60°,可得BPQ為等邊三角形.

證明:(1)∵△ABCBDE為等邊三角形,

ABBC,BDBE,∠ABC=∠DBE60°,

∴∠ABD=∠CBE

ABDCBE中,

ABDCBE(SAS),

AD=EC;

2)∵ABDCBE,∠ABC=∠DBE60°C、BD三點共線,

∴∠ADB=CEB,∠ABE=60°,

PBEQBD中,,

PBEQBDASA),

BP=BQ;

3)連接PQ

BP=BQ,∠ABE=60°

BPQ為等邊三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個桌球游戲的長方形桌面中,,現(xiàn)將球從邊上的點處發(fā)射,依次與邊觸碰并反彈后第一次回到邊上的點處,設(shè)觸碰點依次為,當,,,時,等于________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 請結(jié)合題意填空,完成本題的解答.

)解不等式,得   ;

)解不等式,得   ;

)把不等式的解集在數(shù)軸上表示出來.

)原不等式組的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鞋號是指鞋子的大小,中國于60年代后期,在全國測量腳長的基礎(chǔ)上制定了中國鞋號,1998年政府發(fā)布了基于系統(tǒng),用毫米做單位的中華人民共和國國家標準,被稱為新鞋號,之前以厘米為單位的鞋號從此被稱為舊鞋號”.新舊鞋號部分對應(yīng)表如下:

新鞋號

220

225

230

235

270

舊鞋號

34

35

36

37

1的值為______

2)若新鞋號為,舊鞋號為,則把舊鞋號轉(zhuǎn)換為新鞋號的公式為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖中是拋物線形拱橋,P處有一照明燈,水面OA4m,從O、A兩處觀測P處,仰角分別為α、β,且tanα=,tanβ=,以O為原點,OA所在直線為x軸建立直角坐標系.若水面上升1m,水面寬為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將正整數(shù) 1 2024 按一定規(guī)律排列成如圖所示的 8 列,規(guī)定從上到下依次為第 1 行,第 2 行,第 3 行,從左往右依次為第 1 列至第 8 列.

(1)數(shù) 56 在第 ;

(2)平移圖中帶陰影的方框,使方框框住相鄰的三個數(shù),若被框住的三個數(shù)中最大的一個數(shù)為 x,則被框的三個數(shù)的和能否等于 2019?若能,請求出 x;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點燃蠟燭,按照與時間成正比例關(guān)系變短,長21cm的蠟燭,已知點燃6分鐘后,蠟燭變短3.6cm,設(shè)蠟燭點燃x分鐘后變短ycm,求:

(1)用x表示函數(shù)y的解析式;

(2)自變量的取值范圍;

(3)此蠟燭幾分鐘燃燒完?

(4)畫出此函數(shù)的圖像。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,,頂點;直線

1)點的坐標是______,對角線的交點的坐標是______

2)①過點的直線的解析式是______

②過點的直線的解析式是______

③判斷①、②中兩條直線的位置關(guān)系是______

3)當直線平分的面積時,的值是______

4)一次函數(shù)的圖像______(填“能”或“不能”)平分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在銳角ABC中,ABC=45°,高線AD、BE相交于點F.

(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;

(2)如圖2,將ACD沿線段AD對折,點C落在BD上的點M,AM與BE相交于點N,當DEAM時,判斷NE與AC的數(shù)量關(guān)系并說明理由.

【答案】(1)BF=AC,理由見解析;2NE=AC,理由見解析.

【解析】試題分析:(1)如圖1,證明△ADC≌△BDF(AAS),可得BF=AC;
(2)如圖2,由折疊得:MD=DC,先根據(jù)三角形中位線的推論可得:AE=EC,由線段垂直平分線的性質(zhì)得:AB=BC,則∠ABE=∠CBE,結(jié)合(1)得:△BDF≌△ADM,則∠DBF=∠MAD,最后證明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.

試題解析:

1BF=AC,理由是:

如圖1,ADBCBEAC,

∴∠ADB=AEF=90°,

∵∠ABC=45°

∴△ABD是等腰直角三角形,

AD=BD,

∵∠AFE=BFD

∴∠DAC=EBC,

ADCBDF中,

∴△ADC≌△BDFAAS),

BF=AC

2NE=AC,理由是:

如圖2,由折疊得:MD=DC,

DEAM,

AE=EC,

BEAC

AB=BC,

∴∠ABE=CBE

由(1)得:ADC≌△BDF,

∵△ADC≌△ADM,

∴△BDF≌△ADM,

∴∠DBF=MAD,

∵∠DBA=BAD=45°,

∴∠DBA﹣DBF=BAD﹣MAD,

即∠ABE=BAN,

∵∠ANE=ABE+BAN=2ABE

NAE=2NAD=2CBE,

∴∠ANE=NAE=45°

AE=EN,

EN=AC

型】解答
結(jié)束】
19

【題目】某校學(xué)生會決定從三明學(xué)生會干事中選拔一名干事當學(xué)生會主席,對甲、乙、丙三名候選人進行了筆試和面試,三人的測試成績?nèi)缦卤硭荆?/span>

測試項目

測試成績/分

筆試

75

80

90

面試

93

70

68

根據(jù)錄用程序,學(xué)校組織200名學(xué)生采用投票推薦的方式,對三人進行民主測評,三人得票率如扇形統(tǒng)計圖所示(沒有棄權(quán),每位同學(xué)只能推薦1人),每得1票記分

(1)分別計算三人民主評議的得分;

(2)根據(jù)實際需要,學(xué)校將筆試、面試、民主評議三項得分按3:3:4的比例確定個人成績,三人中誰會當選學(xué)生會主席?

查看答案和解析>>

同步練習(xí)冊答案