【題目】一個不透明的口袋里裝有紅、白、黃三種顏色的乒乓球(除顏色外其余都相同),其中有白球2個,黃球1個.若從中任意摸出一個球,這個球是白球的概率為0.5

1)求口袋中紅球的個數(shù).

2)從袋中任意摸出一球,放回?fù)u勻后,再摸出一球,則兩次都摸到白球的概率是多少?請你用列表或畫樹狀圖的方法說明理由.

【答案】1)紅球有1個;(2,見解析

【解析】

1)根據(jù)求概率的公式列出方程求解即可;

2)依據(jù)題意先用列表法分析所有等可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式求出該事件的概率.

1)設(shè)紅球有x個,

解得:x1,

經(jīng)檢驗:x1是原分式方程的解;

∴紅球有1個;

2)列表如下:

1

2

(紅,紅)

(紅,白1

(紅,白2

(紅,黃)

1

(白1,紅)

(白1,白1

(白1,白2

(白1,黃)

2

(白2,紅)

(白2,白1

(白2,白2

(白2,黃)

(黃,紅)

(黃,白1

(黃,白2

(黃,黃)

∵共有16中情況,其中都是白球的有4種,

P(兩次都摸到白球)=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ABC=90°,以AB為直徑作O,點DO上一點,且CD=CB,連接DO并延長交CB的延長線于點E,連接OC.

(1) 判斷直線CDO的位置關(guān)系,并說明理由;

(2) BE=,DE=3,求O的半徑及AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“每天鍛煉一小時,健康生活一輩子”.為了選拔“陽光大課間”領(lǐng)操員,學(xué)校組織初中三個年級推選出來的15名領(lǐng)操員進(jìn)行比賽,成績?nèi)缦卤恚?/span>

成績/分

7

8

9

10

人數(shù)/人

2

5

4

4

(1)這組數(shù)據(jù)的眾數(shù)是多少,中位數(shù)是多少.

(2)已知獲得2018年四川省南充市的選手中,七、八、九年級分別有1人、2人、1人,學(xué)校準(zhǔn)備從中隨機(jī)抽取兩人領(lǐng)操,求恰好抽到八年級兩名領(lǐng)操員的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個小正方形邊長為的網(wǎng)格中,的頂點,,均在格點上,邊上的一點.

(Ⅰ)線段的值為______________;

(Ⅱ)在如圖所示的網(wǎng)格中,的角平分線,在上求一點,使的值最小,請用無刻度的直尺,畫出和點,并簡要說明和點的位置是如何找到的(不要求證明)___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADBC邊上的高,AEBC邊上的中線,C=45°sinB=,AD=1

1)求BC的長;

2)求tanDAE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙OABC的內(nèi)切圓,切AB,AC于點D、E,∠DOE110°,則∠BOC的度數(shù)為( 。

A.115°B.120°C.125°D.135°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,⊙O的直徑AB12,P是弦BC上一動點(與點B,C不重合),∠ABC30°,過點PPDOP交⊙O于點D

1)如圖2,當(dāng)PDAB時,求PD的長;

2)如圖3,當(dāng)時,延長AB至點E,使BEAB,連接DE

①求證:DE是⊙O的切線;

②求PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的部分對應(yīng)值如下表:

-1

0

1

3

-3

1

3

1

則下列判斷中正確的是(

A.拋物線開口向上B.拋物線與軸的交點在軸負(fù)半軸上

C.當(dāng)時,D.方程的正根在34之間

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) y1 kx ax a 的圖象與 x 軸交于 A、B 兩點(點 A 在點 B 的左側(cè)),已知函數(shù)y2 kx bx b 的圖象與 x 軸交于 CD 兩點(點 C 在點 D 的左側(cè)),其中 k 0, a b

(1)求證:函數(shù) y1 y2 的圖象交點落在一條定直線上;

(2) AB=CD,求 abk 滿足的關(guān)系式;

(3)是否存在函數(shù) y1 y2 ,使得 BC 為線段 AD 的三等分點?若存在,求的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案