【題目】一個不透明的口袋里裝有紅、白、黃三種顏色的乒乓球(除顏色外其余都相同),其中有白球2個,黃球1個.若從中任意摸出一個球,這個球是白球的概率為0.5.
(1)求口袋中紅球的個數(shù).
(2)從袋中任意摸出一球,放回?fù)u勻后,再摸出一球,則兩次都摸到白球的概率是多少?請你用列表或畫樹狀圖的方法說明理由.
【答案】(1)紅球有1個;(2),見解析
【解析】
(1)根據(jù)求概率的公式列出方程求解即可;
(2)依據(jù)題意先用列表法分析所有等可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式求出該事件的概率.
(1)設(shè)紅球有x個,
則,
解得:x=1,
經(jīng)檢驗:x=1是原分式方程的解;
∴紅球有1個;
(2)列表如下:
紅 | 白1 | 白2 | 黃 | |
紅 | (紅,紅) | (紅,白1) | (紅,白2) | (紅,黃) |
白1 | (白1,紅) | (白1,白1) | (白1,白2) | (白1,黃) |
白2 | (白2,紅) | (白2,白1) | (白2,白2) | (白2,黃) |
黃 | (黃,紅) | (黃,白1) | (黃,白2) | (黃,黃) |
∵共有16中情況,其中都是白球的有4種,
∴P(兩次都摸到白球)=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O,點D為⊙O上一點,且CD=CB,連接DO并延長交CB的延長線于點E,連接OC.
(1) 判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2) 若BE=,DE=3,求⊙O的半徑及AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“每天鍛煉一小時,健康生活一輩子”.為了選拔“陽光大課間”領(lǐng)操員,學(xué)校組織初中三個年級推選出來的15名領(lǐng)操員進(jìn)行比賽,成績?nèi)缦卤恚?/span>
成績/分 | 7 | 8 | 9 | 10 |
人數(shù)/人 | 2 | 5 | 4 | 4 |
(1)這組數(shù)據(jù)的眾數(shù)是多少,中位數(shù)是多少.
(2)已知獲得2018年四川省南充市的選手中,七、八、九年級分別有1人、2人、1人,學(xué)校準(zhǔn)備從中隨機(jī)抽取兩人領(lǐng)操,求恰好抽到八年級兩名領(lǐng)操員的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形邊長為的網(wǎng)格中,的頂點,,均在格點上,為邊上的一點.
(Ⅰ)線段的值為______________;
(Ⅱ)在如圖所示的網(wǎng)格中,是的角平分線,在上求一點,使的值最小,請用無刻度的直尺,畫出和點,并簡要說明和點的位置是如何找到的(不要求證明)___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,AE是BC邊上的中線,∠C=45°,sinB=,AD=1.
(1)求BC的長;
(2)求tan∠DAE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的內(nèi)切圓,切AB,AC于點D、E,∠DOE=110°,則∠BOC的度數(shù)為( 。
A.115°B.120°C.125°D.135°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,⊙O的直徑AB=12,P是弦BC上一動點(與點B,C不重合),∠ABC=30°,過點P作PD⊥OP交⊙O于點D.
(1)如圖2,當(dāng)PD∥AB時,求PD的長;
(2)如圖3,當(dāng)時,延長AB至點E,使BE=AB,連接DE.
①求證:DE是⊙O的切線;
②求PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的與的部分對應(yīng)值如下表:
… | -1 | 0 | 1 | 3 | … | |
… | -3 | 1 | 3 | 1 | … |
則下列判斷中正確的是( )
A.拋物線開口向上B.拋物線與軸的交點在軸負(fù)半軸上
C.當(dāng)時,D.方程的正根在3與4之間
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) y1 kx ax a 的圖象與 x 軸交于 A、B 兩點(點 A 在點 B 的左側(cè)),已知函數(shù)y2 kx bx b 的圖象與 x 軸交于 C、D 兩點(點 C 在點 D 的左側(cè)),其中 k 0, a b
(1)求證:函數(shù) y1 與 y2 的圖象交點落在一條定直線上;
(2)若 AB=CD,求 a、b和k 滿足的關(guān)系式;
(3)是否存在函數(shù) y1 與 y2 ,使得 B,C 為線段 AD 的三等分點?若存在,求的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com