【題目】如圖1,已知拋物線y=﹣x2+2x+cx軸交于A、B兩點(diǎn),其中點(diǎn)A(﹣1,0),拋物線與y軸交于點(diǎn)C,頂點(diǎn)為D

1)如圖2,直線l是拋物線的對稱軸,點(diǎn)P是直線l上一動點(diǎn),是否存在點(diǎn)P,使PBC是直角三角形?若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.

2)如圖3,連接BC,點(diǎn)M是直線BC上方的拋物線上的一個動點(diǎn),當(dāng)MBC的面積最大時,求MBC的面積的最大值;點(diǎn)N是線段BC上的一點(diǎn),求MN+BN的最小值.

【答案】1)存在,點(diǎn)P的坐標(biāo)為:(14)或(1,﹣2)或(1,)或(1);(2

【解析】

1)函數(shù)的對稱軸x=﹣1,則點(diǎn)B30),即可求解;

2)分PB為斜邊、PC為斜邊、BC為斜邊三種情況,分別求解即可;

3MBC的面積S×MN′×OB(﹣x2+2x+3+x3)=(﹣x2+3x)=﹣3x2+x,﹣30,故S有最大值為,此時點(diǎn)M,);HNBN,MN+BN最小值=MN′+NHMH,即點(diǎn)N為所求的點(diǎn)N,即可求解.

1)函數(shù)的對稱軸x=﹣1,則點(diǎn)B30),

則拋物線的表達(dá)式為:y=﹣(x+1)(x3)=﹣(x22x3)=﹣x2+2x+3;

存在,理由:

設(shè):點(diǎn)P1,m),

PB2m2+4,PC2=(m32+1BC218,

①當(dāng)PB為斜邊時,則m2+4=(m32+1+18,解得:m4;

②當(dāng)PC為斜邊時,同理可得:m=﹣2

③當(dāng)BC為斜邊時,同理可得:m

故點(diǎn)P的坐標(biāo)為:(1,4)或(1,﹣2)或(1)或(1,);

2)過點(diǎn)MMNx軸于點(diǎn)H,交BC于點(diǎn)N,

將點(diǎn)B、C的坐標(biāo)代入一次函數(shù)表達(dá)式并解得:

直線BC的表達(dá)式為:y=﹣x+3,則∠CBA45°,

設(shè)點(diǎn)Mx,﹣x2+2x+3),則點(diǎn)Nx,﹣x+3),

MBC的面積S×MN′×OB(﹣x2+2x+3+x3)=(﹣x2+3x)=﹣3x2+x,

∵﹣30,故S有最大值為,此時點(diǎn)M);

HNBN,

MN+BN最小值=MN′+NHMH,即點(diǎn)N為所求的點(diǎn)N,

MN+BN最小值為=MHyM

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的桌面上,背面朝上擺放著同一幅撲克牌中的三張撲克牌,它們分別是紅桃A、方塊6、黑桃9.將紅桃A、方塊6、黑桃9上數(shù)字分別記為數(shù)字1、69.將它們洗勻后,小紅先從中隨機(jī)抽取一張撲克牌記下數(shù)字后放回,洗勻后,再隨機(jī)抽取一張撲克牌記下數(shù)字.用畫樹狀圖或列表的方法,求小明兩次抽取的撲克牌的數(shù)字之和是5的倍數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,BC>AB,在BC邊上取點(diǎn)D,使AB=BD,構(gòu)造正方形ABDEDEAC于點(diǎn)F,作EGACAC于點(diǎn)G,交BC于點(diǎn)H

(1)求證:AEF≌△EDH

(2)AB=3,DH=2DF,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),∠ABC的平分線交⊙O于點(diǎn)D,DEBC于點(diǎn)E.

(1)試判斷DE與⊙O的位置關(guān)系,并說明理由;

(2)過點(diǎn)DDFAB于點(diǎn)F,若BE=3,DF=3,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與x軸交于點(diǎn)A10)和點(diǎn)B,與y軸交于點(diǎn)C06),對稱軸為直線x2,頂點(diǎn)為D.求二次函數(shù)的解析式及四邊形ADBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3x軸交于A(﹣4,0)、B(﹣l,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是第三象限的拋物線上一動點(diǎn).

(1)求拋物線的解析式;

(2)設(shè)點(diǎn)D的橫坐標(biāo)為m,△ACD的面積為量求出Sm的函數(shù)關(guān)系式,并確定m為何值時S有最大值,最大值是多少?

(3)若點(diǎn)P是拋物線對稱軸上一點(diǎn),是否存在點(diǎn)P使得∠APC=90°?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),Bx軸上,四邊形OACB為平行四邊形,且

AOB=60°,反比例函數(shù)k>0)在第一象限內(nèi)過點(diǎn)A,且與BC交于點(diǎn)F。當(dāng)FBC的中點(diǎn),且SAOF=12 時,OA的長為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(﹣51),B(﹣2,2),C(﹣14),請按下列要求畫圖:

1)將△ABC先向右平移4個單位長度、再向下平移1個單位長度,得到△A1B1C1,畫出△A1B1C1;

2)畫出與△ABC關(guān)于原點(diǎn)O成中心對稱的△A2B2C2,并直接寫出點(diǎn)A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】書法是我國的文化瑰寶,研習(xí)書法能培養(yǎng)高雅的品格.某校為加強(qiáng)書法教學(xué),了解學(xué)生現(xiàn)有的書寫能力,隨機(jī)抽取了部分學(xué)生進(jìn)行測試,測試結(jié)果分為優(yōu)秀、良好、及格、不及格四個等級,分別用A,B,C,D表示,并將測試結(jié)果繪制成如圖兩幅不完整的統(tǒng)計圖.

請根據(jù)統(tǒng)計圖中的信息解答以下問題:

1)本次抽取的學(xué)生人數(shù)是 人,扇形統(tǒng)計圖中A所對應(yīng)扇形圓心角的度數(shù)是

2)把條形統(tǒng)計圖補(bǔ)充完整.

3)若該學(xué)校共有2800人,等級達(dá)到優(yōu)秀的人數(shù)大約有多少?

查看答案和解析>>

同步練習(xí)冊答案