【題目】如圖,拋物線軸于兩點,交軸于點直線經過點

1)求拋物線的解析式;

2)點是直線下方的拋物線上一動點,過點軸于點交直線于點設點的橫坐標為的值;

3是第一象限對稱軸右側拋物線上的一點,連接拋物線的對稱軸上是否存在點.使得相似,且為直角,若存在,請直接寫出點的坐標,若不存在,請說明理由.

【答案】1;(2 ;(3)存在,點坐標為

【解析】

1)先求出點A、B坐標,用待定系數(shù)法即求出拋物線解析式;

2)根據(jù)拋物線解析式與直線解析式表示出點P、F的坐標,然后表示出PE、PF,再列出絕對值方程,然后求解即可;

3)先求出點C的坐標,也就求出OC的長,再設對稱軸與軸交于點點作交對稱軸于點.根據(jù)相似三角形的性質得到KMMQ的長,進而表示出點N的坐標,最后將點N的坐標代入函數(shù)解析式求解即可.

經過點分別在軸與軸上,

拋物線經過點,

,解得

拋物線的解析式為

的橫坐標為

由題意可知,點的坐標為的坐標為

當點軸上方時,

解得(與點重合,舍去)

當點軸下方時,

解得(與點重合,舍去)

綜上所述,的值為

存在,點坐標為

如圖,設對稱軸與軸交于點點作交對稱軸于點

軸交于兩點,

拋物線的對稱軸為直線

時,

由一線三垂直模型得出,

在拋物線上,

解得()

的坐標為

時,

同理

,

在拋物線上,

解得(),

的坐標為

綜上所述,存在點的坐標為,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】1)不透明的袋子A中裝有紅球1個、白球1個,不透明的袋子B中裝有紅球1個、白球2個,這些球除顏色外無其他差別.分別從兩個袋子中隨機摸出一個球,求摸出的兩個球顏色不同的概率;

2)甲、乙兩人解同一道數(shù)學題,甲正確的概率為,乙正確的概率為,則甲乙恰有一人正確的概率是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,拋物線軸于AB兩點,交軸于點C,直線經過點A、C

1)求拋物線的解析式;

2)點P為直線AC上一點,在平面內是否存在點Q,使得以A、B、P、Q為頂點的四邊形為正方形?若存在,求出點Q的坐標,若不存在,請說明理由;

3)在軸上存在點M,且,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:

售價x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

1)求yx之間的函數(shù)表達式;

2)設商品每天的總利潤為W(元),則當售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?

3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校園安全越來越受到人們的關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.根據(jù)圖中信息回答下列問題:

1)接受問卷調查的學生共有______人,條形統(tǒng)計圖中m的值為______

2)扇形統(tǒng)計圖中了解很少部分所對應扇形的圓心角的度數(shù)為______;

3)若該中學共有學生1800人,根據(jù)上述調查結果,可以估計出該學校學生中對校園安全知識達到非常了解基本了解程度的總人數(shù)為______人;

4)若從對校園安全知識達到非常了解程度的2名男生和2名女生中隨機抽取2人參加校園安全知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小帶和小路兩個人開車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,小帶和小路兩人車離開A城的距離y(km)與行駛的時間t(h)之間的函數(shù)關系如圖所示.有下列結論;①A,B兩城相距300 km;②小路的車比小帶的車晚出發(fā)1 h,卻早到1 h;③小路的車出發(fā)后2.5 h追上小帶的車;④當小帶和小路的車相距50 km時,tt.其中正確的結論有(  )

A. ①②③④B. ①②④

C. ①②D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小松想利用所學數(shù)學知識測量學校旗桿高度,如圖,旗桿AB的頂端垂下一繩子,將繩子拉直釘在地上,末端恰好在C處且與地面成60°角,小松拿起繩子末端,后退至E處,并拉直繩子,此時繩子末端D距離地面2m且繩子與水平方向成45°角.求旗桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,點上一點,的平分線于點,過點的延長線于點

1)求證:的切線;

2)過點于點,連接.若,求的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一張長方形紙片,沿對角線折疊,點的對應點為相交于點,則下列結論中不一定正確的是(

A.B.C.D.

查看答案和解析>>

同步練習冊答案