【題目】如圖,直線AB,CD,EF相交于點(diǎn)O,OG是∠AOF的平分線,∠BOD=35°,∠COE=18°,則∠COG的度數(shù)是________.
【答案】98.5°
【解析】
已知∠BOD、∠COE的度數(shù),根據(jù)對頂角相等可求出∠AOC、∠DOF的度數(shù),∠BOD已知,∠DOF已求出,則∠AOF的度數(shù)可求出,再根據(jù)OG 是∠AOF的平分線,進(jìn)一步求出∠AOG,再根據(jù)∠COG=∠AOC+∠AOG,則∠COG的度數(shù)即可求得.
∵∠BOD=35°,
∴∠AOC=35°,
∵∠COE=18°,
∴∠DOF=18°,
∴∠BOF=∠BOD+∠DOF=35°+18°=53°,
∴∠AOF=180°-53°=127°,
∵OG平分∠AOF,
∴∠AOG=∠GOF=∠AOF=×127°=63.5°,
∴∠COG=∠AOC+∠AOG=35°+63.5°=98.5°.
故答案為:98.5°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南水北調(diào)中線工程北京段干線工程起自房山北拒馬河,經(jīng)房山區(qū)至大寧水庫,穿永定河,過豐臺,沿西四環(huán)路北上至終點(diǎn)頤和園團(tuán)城湖,全長80公里. 主要采取地下涵管壓力輸水方式,在輸水過程中全程計(jì)量、跟蹤監(jiān)測、精細(xì)調(diào)度、高效配置,確保最大限度利用南水. 北京嚴(yán)格遵循南水北調(diào)工程“三先三后”原則,科學(xué)制定用水計(jì)劃,研究確立了“節(jié)、喝、存、補(bǔ)”的用水方針,2017-2018年度入京水量達(dá)12.10億立方米,成為歷年來北京調(diào)水最多的一個(gè)調(diào)水年度. 如圖,在鋪設(shè)地下管道的時(shí)候,需要把拒馬河沿線的管道l中的水引到房山水站A,B兩處.
工人師傅設(shè)計(jì)了一種最節(jié)省材料的修建方案如下:
請回答:工人師傅的畫圖依據(jù)是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:拋物線y=ax2+bx+c交y軸于點(diǎn)C(0,4),對稱軸x=2與x軸交于點(diǎn)D,頂點(diǎn)為M,且DM=OC+OD,
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)P(x,y)是第一象限內(nèi)該拋物線上的一個(gè)動(dòng)點(diǎn),△PCD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求當(dāng)x取多少時(shí),S的值最大,最大是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形紙片ABCD按如圖所示的方式折疊,AE、EF為折痕,∠BAE=30°,AB= ,折疊后,點(diǎn)C落在AD邊上的C1處,并且點(diǎn)B落在EC1邊上的B1處.則BC的長為( )
A.
B.2
C.3
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y= x+4與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C、D分別為線段AB、OB的中點(diǎn),點(diǎn)P為OA上一動(dòng)點(diǎn),PC+PD值最小時(shí)點(diǎn)P的坐標(biāo)為( )
A.(﹣3,0)
B.(﹣6,0)
C.(﹣ ,0)
D.(﹣ ,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電子元件廠準(zhǔn)備生產(chǎn)1200個(gè)電子元件,生產(chǎn)一半后,由于要盡快投入市場,該廠提高了生產(chǎn)效率,每天生產(chǎn)的電子元件個(gè)數(shù)是原來的1.2倍,結(jié)果提前2天完成了任務(wù),求該廠后來每天生產(chǎn)電子元件多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理過程,請?zhí)羁?/span>.
解:∵OA⊥OB(已知)
所以_____=90°(________)
因?yàn)?/span>_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,
所以______=_____(等量代換)
所以______=90°
所以OC⊥OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:①若x=0,則x2﹣2x=0;②若 = ,則a=b;③矩形既是軸對稱圖形又是中心對稱圖形;④圓內(nèi)接四邊形的對角一定相等.其中原命題與逆命題均為真命題的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com