(2013•永州)我們知道,一元二次方程x2=-1沒(méi)有實(shí)數(shù)根,即不存在一個(gè)實(shí)數(shù)的平方等于-1.若我們規(guī)定一個(gè)新數(shù)“i”,使其滿足i2=-1(即方程x2=-1有一個(gè)根為i).并且進(jìn)一步規(guī)定:一切實(shí)數(shù)可以與新數(shù)進(jìn)行四則運(yùn)算,且原有運(yùn)算律和運(yùn)算法則仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i22=(-1)2=1,從而對(duì)于任意正整數(shù)n,我們可以得到i4n+1=i4n•i=(i4n•i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值為( 。
分析:i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i22=(-1)2=1,i5=i4•i=i,i6=i5•i=-1,從而可得4次一循環(huán),一個(gè)循環(huán)內(nèi)的和為0,計(jì)算即可.
解答:解:由題意得,i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i22=(-1)2=1,i5=i4•i=i,i6=i5•i=-1,
故可發(fā)現(xiàn)4次一循環(huán),一個(gè)循環(huán)內(nèi)的和為0,
2013
4
=503…1,
∴i+i2+i3+i4+…+i2012+i2013=i.
故選D.
點(diǎn)評(píng):本題考查了實(shí)數(shù)的運(yùn)算,解答本題的關(guān)鍵是計(jì)算出前面幾個(gè)數(shù)的值,發(fā)現(xiàn)規(guī)律,求出一個(gè)循環(huán)內(nèi)的和再計(jì)算,有一定難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•永州)電腦系統(tǒng)中有個(gè)“掃雷”游戲,要求游戲者標(biāo)出所有的雷,游戲規(guī)則:一個(gè)方塊下面最多埋一個(gè)雷,如果無(wú)雷,掀開方塊下面就標(biāo)有數(shù)字,提醒游戲者此數(shù)字周圍的方塊(最多八個(gè))中雷的個(gè)數(shù)(實(shí)際游戲中,0通常省略不標(biāo),為方便大家識(shí)別與印刷,我把圖乙中的0都標(biāo)出來(lái)了,以示與未掀開者的區(qū)別),如圖甲中的“3”表示它的周圍八個(gè)方塊中僅有3個(gè)埋有雷.圖乙是張三玩游戲中的局部,圖中有4個(gè)方塊己確定是雷(方塊上標(biāo)有旗子),則圖乙第一行從左數(shù)起的七個(gè)方塊中(方塊上標(biāo)有字母),能夠確定一定是雷的有
B、D、F、G
B、D、F、G
.(請(qǐng)?zhí)钊敕綁K上的字母)

查看答案和解析>>

同步練習(xí)冊(cè)答案