【題目】計(jì)算:
(1)先化簡,再求值:( ﹣ ) ,其中x= ﹣2.
(2)計(jì)算:|﹣4|+( )﹣2﹣( ﹣1)0﹣ cos45°.
【答案】
(1)解:( ﹣ )
=
=3(x+1)﹣(x﹣1)
=3x+3﹣x+1
=2x+4,
當(dāng)x= ﹣2時,原式=2( ﹣2)+4=2 ﹣4+4=2
(2)解:|﹣4|+( )﹣2﹣( ﹣1)0﹣ cos45°
=4+4﹣1﹣
=4+4﹣2
=6.
【解析】(1)先將括號里的分式通分,再進(jìn)行乘法運(yùn)算(約分),結(jié)果化成最簡分式,代入化簡后的分式求值即可。
(2)此題利用利用絕對值的代數(shù)意義、負(fù)指數(shù)冪法則、零指數(shù)冪法則及特殊角的三角函數(shù)值化簡,計(jì)算即可得到結(jié)果.
【考點(diǎn)精析】本題主要考查了零指數(shù)冪法則和整數(shù)指數(shù)冪的運(yùn)算性質(zhì)的相關(guān)知識點(diǎn),需要掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)A、D在y軸正半軸上,點(diǎn)B、C分別在x軸上,CD平分∠ACB,與y軸交于D點(diǎn),∠CAO=90°-∠BDO.
(1)求證:AC=BC:
(2)如圖2,點(diǎn)C的坐標(biāo)為(4,0),點(diǎn)E為AC上一點(diǎn),且∠DEA=∠DBO,求BC+EC的長;
(3)如圖3,過D作DF⊥AC于F點(diǎn),點(diǎn)H為FC上一動點(diǎn),點(diǎn)G為OC上一動點(diǎn),當(dāng)H在FC上移動、點(diǎn)G在OC上移動時,始終滿足∠GDH=∠GDO+∠FDH,試判斷FH、GH、OG這三者之間的數(shù)量關(guān)系,寫出你的結(jié)論并加以證明.
(圖3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一次函數(shù)y=﹣x+b與反比例函數(shù)y= (k≠0)的圖象交于點(diǎn)A(1,3),B(m,1),與x軸交于點(diǎn)D,直線OA與反比例函數(shù)y= (k≠0)的圖象的另一支交于點(diǎn)C,過點(diǎn)B作直線l垂直于x軸,點(diǎn)E是點(diǎn)D關(guān)于直線l的對稱點(diǎn).
(1)k=;
(2)判斷點(diǎn)B,E,C是否在同一條直線上,并說明理由;
(3)如圖2,已知點(diǎn)F在x軸正半軸上,OF= ,點(diǎn)P是反比例函數(shù)y= (k≠0)的圖象位于第一象限部分上的點(diǎn)(點(diǎn)P在點(diǎn)A的上方),∠ABP=∠EBF,則點(diǎn)P的坐標(biāo)為( , ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F(xiàn)是BC的中點(diǎn),過D分別作DP⊥AF于P,DQ⊥CE于Q,則DP:DQ等于( )
A.3:4
B. :2
C. :2
D.2 :
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題:如圖1,△ABC中,∠B=30°,AB=3,BC=4,則△ABC的面積等于
(1)【回顧】
如圖1,△ABC中,∠B=30°,AB=3,BC=4,則△ABC的面積等于 .
(2)【探究】
圖2是同學(xué)們熟悉的一副三角尺,一個含有30°的角,較短的直角邊長為a;另一個含有45°的角,直角邊長為b,小明用兩副這樣的三角尺拼成一個平行四邊形ABCD(如圖3),用了兩種不同的方法計(jì)算它的面積,從而推出sin75°= ,小麗用兩副這樣的三角尺拼成了一個矩形EFGH(如圖4),也推出sin75°= ,請你寫出小明或小麗推出sin75°= 的具體說理過程.
(3)【應(yīng)用】
在四邊形ABCD中,AD∥BC,∠D=75°,BC=6,CD=5,AD=10(如圖5)
①點(diǎn)E在AD上,設(shè)t=BE+CE,求t2的最小值;
②點(diǎn)F在AB上,將△BCF沿CF翻折,點(diǎn)B落在AD上的點(diǎn)G處,點(diǎn)G是AD的中點(diǎn)嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生會主席換屆選舉,經(jīng)初選、復(fù)選后,共有甲,乙,丙三人進(jìn)入最后的競選,最后決定用投票方式進(jìn)行選舉,共發(fā)出1800張選票,得票數(shù)最高者為當(dāng)選人,且廢票不計(jì)入任何一位候選人的得票數(shù)內(nèi),全校設(shè)有四個投票箱,目前第一、第二、第三投票箱已開完所有選票,剩下第四投票箱尚未開票,結(jié)果如表所示:單位:票
投票箱 | 候選人 | 廢票 | 合計(jì) | ||
甲 | 乙 | 丙 | |||
一 | 200 | 211 | 147 | 12 | 570 |
二 | 244 | 15 | 630 | ||
三 | 97 | 41 | 205 | 7 | 350 |
四 | 250 |
若第二投票箱候選人甲的得票數(shù)比乙的3倍還多31票,請分別求出第二投票箱甲、乙兩名候選人的得票數(shù).
根據(jù)題的數(shù)據(jù)分析,請判斷乙侯選人是否還有機(jī)會當(dāng)選,并詳細(xì)解釋或完整寫出你的解題過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果兩個角的差的絕對值等于,就稱這兩個角互為反余角,其中一個角叫做另一個角的反余角,例如,,,,則和互為反余角,其中是的反余角,也是的反余角.
如圖為直線AB上一點(diǎn),于點(diǎn)O,于點(diǎn)O,則的反余角是______,的反余角是______;
若一個角的反余角等于它的補(bǔ)角的,求這個角.
如圖2,O為直線AB上一點(diǎn),,將繞著點(diǎn)O以每秒角的速度逆時針旋轉(zhuǎn)得,同時射線OP從射線OA的位置出發(fā)繞點(diǎn)O以每秒角的速度逆時針旋轉(zhuǎn),當(dāng)射線OP與射線OB重合時旋轉(zhuǎn)同時停止,若設(shè)旋轉(zhuǎn)時間為t秒,求當(dāng)t為何值時,與互為反余角圖中所指的角均為小于平角的角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板如圖1擺放在直線MN上,在三角板OAB和三角板OCD中,,,.
保持三角板OCD不動,將三角板OAB繞點(diǎn)O以每秒的速度逆時針旋轉(zhuǎn),旋轉(zhuǎn)時間為t秒.
當(dāng)______秒時,OB平分此時______;
當(dāng)三角板OAB旋轉(zhuǎn)至圖2的位置,此時與有怎樣的數(shù)量關(guān)系?請說明理由;
如圖3,若在三角板OAB開始旋轉(zhuǎn)的同時,另一個三角板OCD也繞點(diǎn)O以每秒的速度逆時針旋轉(zhuǎn),當(dāng)OB旋轉(zhuǎn)至射線OM上時同時停止.
當(dāng)t為何值時,OB平分?
直接寫出在旋轉(zhuǎn)過程中,與之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)坐標(biāo)為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點(diǎn)逆時針旋轉(zhuǎn)90°,得到△A1B1C1,將△A1B1C1向右平移6個單位,再向上平移2個單位得到△A2B2C2.
(1)畫出△A1B1C1和△A2B2C2;
(2)△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)A的對應(yīng)點(diǎn)分別為A1、A2,請寫出點(diǎn)A1、A2的坐標(biāo);
(3)P(a,b)是△ABC的邊AC上一點(diǎn),△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)P的對應(yīng)點(diǎn)分別為P1,P2,請寫出點(diǎn)P1、P2的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com