(本小題滿分8分)如圖,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形AOCB是梯形,AB∥OC,點(diǎn)A在y軸上,點(diǎn)C在x軸上,且,OB=OC.
(1)求點(diǎn)B的坐標(biāo);
(2)點(diǎn)P從C點(diǎn)出發(fā),沿線段CO以5個單位/秒的速度向終點(diǎn)O勻速運(yùn)動,過點(diǎn)P作PH⊥OB,垂足為H,設(shè)△HBP的面積為S(S≠0),點(diǎn)P的運(yùn)動時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式(直接寫出自變量t的取值范圍);
(3)在(2)的條件下,過點(diǎn)P作PM∥CB交線段AB于點(diǎn)M,過點(diǎn)M作MR⊥OC,垂足為R,線段MR分別交直線PH、OB于點(diǎn)E、G,點(diǎn)F為線段PM的中點(diǎn),聯(lián)結(jié)EF.
①判斷EF與PM的位置關(guān)系;
②當(dāng)t為何值時(shí),?
解:(1)如圖1,過點(diǎn)B作BN⊥OC,垂足為N
∵,OB=OC
∴OA=8,OC=10 -------------------------------1分
∴OB=OC=10, BN=OA=8
∴
∴B (6,8) ----------------------------------------------2分
(2)如圖1,∵∠BON=∠POH,∠ONB=∠OHP=90°.
∴△BON∽△POH ∴
∵PC=5t. ∴OP=10-5t. ∴OH=6-3t. PH=8-4t.
∴BH=OB-OH=10-(6-3t)=3t+4
∴ ------------------------------------ 3分
∴t的取值范圍是:0≤t<2 ------------------------------------------4分
(3)①EF⊥PM ----------------------------------------------------5分
∵M(jìn)R⊥OC,PH⊥OB
∴∠RPM+∠RMP=90°,∠HPD+∠HDP=90°
∵OC=OB ∴∠OCB=∠OBC.
∵BC∥PM
∴∠RPM=∠HDP,∴∠RMP=∠HPD,即:∠ EMP=∠HPM
∴EM=EP
∵點(diǎn)F為PM的中點(diǎn) ∴EF⊥PM ----------6分
②如圖2過點(diǎn)B作BN′⊥OC,垂足為 N′,BN′=8,CN′=4
∵BC∥PM,MR⊥OC
∴△MRP≌△B N′C
∴PR=C N′=4
設(shè)EM=x,則EP=x
在△PER中,∠ERP=90°,RE=MR-ME=8-x
有,∴x=5
∴ME=5
∵△MGB∽△N′BO
∴
∵ PM∥CB,AB∥OC
∴四邊形BMPC是平行四邊形. ∴ BM=PC=5t.
第一種情況:當(dāng)點(diǎn)G在點(diǎn)E上方時(shí)(如圖2)
∵EG=2,∴MG=EM-EG=5-2=3
∴ ∴t= --------------------7分
第二種情況:當(dāng)點(diǎn)G在點(diǎn)E下方時(shí)(如圖3) MG=ME+EG=5+2=7,
∴ ,∴t= -------------------------------------------8分
∴當(dāng)t=或時(shí),.
解析:略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
(本小題滿分7分)
如圖,已知拋物線y1=-x2+bx+c經(jīng)過A(1,0),B(0,-2)兩點(diǎn),頂點(diǎn)為D.
1.(1)求拋物線y1 的解析式;
2.(2)將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°后,得到△AO′ B′ ,將拋物線y1沿對稱軸平移后經(jīng)過點(diǎn)B′ ,寫出平移后所得的拋物線y2 的解析式;
3.(3)設(shè)(2)的拋物線y2與軸的交點(diǎn)為B1,頂點(diǎn)為D1,若點(diǎn)M在拋物線y2上,且滿足△MBB1的面積是△MDD1面積的2倍,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(本小題滿分6分)
如圖,在8×11的方格紙中,每個小正方形的邊長均為1,△ABC的頂點(diǎn)均在小正方形的頂點(diǎn)處.
1.(1)畫出△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)90°得到的△;
2.(2)求點(diǎn)B運(yùn)動到點(diǎn)B′所經(jīng)過的路徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)
如圖1,拋物線與y軸交于點(diǎn)A,E(0,b)為y軸上一動點(diǎn),過點(diǎn)E的直線與拋物線交于點(diǎn)B、C.
1.(1)求點(diǎn)A的坐標(biāo);
2.(2)當(dāng)b=0時(shí)(如圖2),求與的面積。
3.(3)當(dāng)時(shí),與的面積大小關(guān)系如何?為什么?
4.(4)是否存在這樣的b,使得是以BC為斜邊的直角三角形,若存在,求出b;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010-2011年江蘇省常州實(shí)驗(yàn)初級中學(xué)九年級第二學(xué)期模擬考試數(shù)學(xué)卷 題型:解答題
(本小題滿分8分)如圖所示的矩形包書紙中,虛線是折痕,陰影是裁剪掉的部分,四個角均為大小相同的正方形,正方形的邊長為折疊進(jìn)去的寬度.
【小題1】(1)設(shè)課本的長為a cm,寬為b cm,厚為c cm,如果按如圖所示的包書方式,將封面和封底 各折進(jìn)去3cm,用含a,b,c的代數(shù)式,分別表示滿足要求的矩形包書紙的長與寬;
【小題2】(2)現(xiàn)有一本長為19cm,寬為16cm,厚為6cm的字典,你能用一張長為43cm,寬為26cm的矩形紙包好這本字典,并使折疊進(jìn)去的寬度不小于3cm嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年河北省石家莊市42中學(xué)九年級第一次模擬考試數(shù)學(xué)卷 題型:解答題
(本小題滿分9分)
如圖,兩根鐵棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的長度是它的,另一根露出水面的長度是它的.兩根鐵棒長度之和為55 cm.
(1)根據(jù)題意,甲、乙兩個同學(xué)分別列出了尚不完整的方程(組)如下:
甲: 乙: =55
根據(jù)甲、乙兩名同學(xué)所列的方程(組),請你分別指出未知數(shù)x,y表示的意義,然后在橫線上補(bǔ)全甲、乙兩名同學(xué)所列的方程(組):
甲:x表示 ,y表示 ;
乙:x表示 ;
(2)求此時(shí)木桶中水的深度多少cm?(寫出完整的解答過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com