【題目】如圖,AB、CD分別與半圓OO切于點A,D,BC⊙O于點E.若AB=4,CD=9,則⊙O的半徑為( 。

A. 12 B. C. 6 D. 5

【答案】C

【解析】

BCD的垂線,設(shè)垂足為F;由切線長定理知:BA=BE,CE=CD;即BC=AB+CD;在構(gòu)建的RtBFC中,BC=AB+CD,CF=CD-AB,根據(jù)勾股定理即可求出BF即圓的直徑,進而可求出⊙O的半徑

BBFCDF,

AB、CD與半圓O切于A、D,

∴∠BAD=CDA=BFD=90°,

∴四邊形ADFB為矩形,

AB=DF,BF=AD,

AB=BE=4,CD=CE=9;

BC=BE+CE=13;

AB、CD與半圓O相切,

∴四邊形ADFB為矩形;

CF=CD-FD=9-4=5,

RtBFC中,BF===12,

AD=BF=12,

∴⊙O的半徑為6.

故選:C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,.將向上翻折,使點落在上,記為點,折痕為,再將為對稱軸翻折至,連接

1)證明:

2)猜想四邊形的形狀并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算(每小題4分,共16分)

1

2)已知.求代數(shù)式的值.

3)先化簡,再求值,其中.

4)解分式方程:+3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:①abc>0;b<a+c;4a+2b+c>0;2c<3b;b2>4ac;其中正確的結(jié)論有______.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線x軸交于點A,與y軸交于點C.拋物線經(jīng)過A,C兩點,且與x軸交于另一點BB在點A右側(cè)

1求拋物線的解析式及點B坐標;

2若點M是線段BC上的一動點,過點M的直線EF平行y軸交x軸于點F,交拋物線于點E.求ME長的最大值;

3試探究當ME取最大值時,在拋物線上、x軸下方是否存在點P,使以M,F(xiàn),B,P為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標;若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtAOB中,∠AOB=90°,OA=3,OB=2,將RtAOB繞點O順時針旋轉(zhuǎn)90°后得RtFOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,CAB延長線上一點,CD⊙O相切于點E,AD⊥CD于點D

1)求證:AE平分∠DAC;

2)若AB=4∠ABE=60°

AD的長;

求出圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為創(chuàng)建全國文明城市,開展“美化綠化城市”活動,計劃經(jīng)過若干年使城區(qū)綠化總面積新增360萬平方米.自2013年初開始實施后,實際每年綠化面積是原計劃的1.6倍,這樣可提前4年完成任務(wù).

(1)問實際每年綠化面積多少萬平方米?

(2)為加大創(chuàng)城力度,市政府決定從2016年起加快綠化速度,要求不超過2年完成,那么實際平均每年綠化面積至少還要增加多少萬平方米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校名學生參加植樹活動,要求每人植棵,活動結(jié)束后隨機抽查了名學生每人的植樹量,并分為四種類型,棵;;棵;棵,棵。將各類的人繪制成扇形圖(如圖1)和條形圖(如圖2),經(jīng)確認扇形圖是正確的,而條形圖尚有一處錯誤。

回答下列問題:

1)寫出條形圖中存在的錯誤,并說明理由.

2)寫出這名學生每人植樹量的眾數(shù)、中位數(shù).

3)在求這名學生每人植樹量的平均數(shù).

4)估計這名學生共植樹多少棵.

查看答案和解析>>

同步練習冊答案