【題目】如圖,某住宅小區(qū)在施工過程中留下了一塊空地(圖中的四邊形ABCD),經(jīng)測量,在四邊形ABCD中,AB3m,BC4m,CD12m,DA13m,∠B90°,連接AC.

(1)ACD是直角三角形嗎?為什么?

(2)小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問鋪滿這塊空地共需花費多少元?

【答案】(1) ACD是直角三角形,見解析; (2) 3600.

【解析】

1)先在RtABC中,利用勾股定理可求AC,在ACD中,易求AC2+CD2=AD2,再利用勾股定理的逆定理可知ACD是直角三角形,且∠ACD=90°;
2)分別利用三角形的面積公式求出ABC、ACD的面積,兩者相加即是四邊形ABCD的面積,再乘以100,即可求總花費.

解:(1)RtABC中,

AB=3mBC=4m,∠B=90°,AB2+CB2=AC2

AC=5cm,

ACD中,AC=5cm,CD=12m,DA=13m,

AC2+CD2=AD2

∴△ACD是直角三角形,∠ACD=90°;.

(2)SABC=×3×4=6,SACD=×5×12=30,

S四邊形ABCD=6+30=36,

費用=36×100=3600()

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C、EB、D、F分別在∠GAH的兩邊上,且AB=BC=CD=DE=EF,若∠A=18°,則∠GEF的度數(shù)是( )

A. 80° B. 90° C. 100° D. 108°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a0)的部分圖象如圖所示,則下列結(jié)論:

①關(guān)于x的一元二次方程ax2+bx+c=0的根是﹣1,3;abc0;a+b=c﹣b;y最大值=c;a+4b=3c中正確的有_____(填寫正確的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰RtABC中,∠ACB=90°,AB=4,點EAB的中點.以AE為邊作等邊ADE(點D與點C分別在AB的異側(cè)),連接CD.則ACD的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們經(jīng)濟(jì)收入的不斷提高,汽車已越來越多地進(jìn)入到各個家庭.某大型超市為緩解停車難問題,建筑設(shè)計師提供了樓頂停車場的設(shè)計示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標(biāo)志,以便告知車輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(1,5),直線l1y=x,直線l2過原點且與x軸正半軸成60°夾角,在l1上有一動點M,在l2上有一動點N,連接AMMN,則AM+MN的最小值為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老師將本班的校園安全知識競賽成績(成績用s表示,滿分為100分)分為5組,第1組:50≤x<60,第2組:60≤x<70,…,第5組:90≤x<100.并繪制了如圖所示的頻率分布表和頻數(shù)分布直方圖(不完整).

(1)請補全頻率分布表和頻數(shù)分布直方圖;

(2)王老師從第1組和第5組的學(xué)生中,隨機(jī)抽取兩名學(xué)生進(jìn)行談話,求第1組至少有一名學(xué)生被抽到的概率;

(3)設(shè)從第1組和第5組中隨機(jī)抽到的兩名學(xué)生的成績分別為m、n,求事件“|m﹣n|≤10”的概率.

分組編號

成績

頻數(shù)

頻率

1

50≤s<60

0.04

2

60≤s<70

8

0.16

3

70≤s<80

0.4

4

80≤s<90

17

0.34

5

90≤s≤100

3

0.06

合計

1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知直線軸,軸分別交于A,B兩點,過點B在第二象限內(nèi)作,連接.

(1)求點C的坐標(biāo).

(2)如圖2,過點C作直線軸交AB于點D,交軸于點E,

請從下列A,B兩題中任選一題作答,我選擇______

A.①求線段CD的長.

②在坐標(biāo)平面內(nèi),是否存在點M(除點B),使得以點M,CD為頂點的三角形與全等?若存在,請直接寫出所有符合條件的點M的坐標(biāo):若不存在,請說明理由.

B.①如圖3,在圖2的基礎(chǔ)上,過點D于點F,求線段DF的長.

②在坐標(biāo)平面內(nèi),是否存在點M(除點F),使得以點MC,D為頂點的三角形與全等?若存在,請直接寫出所有符合條件的點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防甲型H1N1,某校對教室采用藥薰消毒法進(jìn)行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量ymg)與時間x(min)成正比例,藥物燃燒后,yx成反比例,如圖所示,現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣每立方米的含藥量為6mg,請你根據(jù)題中提供的信息,解答下列問題:

(1)藥物燃燒時,求y關(guān)于x的函數(shù)關(guān)系式?自變量x的取值范圍是什么?藥物燃燒后yx的函數(shù)關(guān)系式呢?

(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6mg時,生方可進(jìn)教室,那么從消毒開始,至少需要幾分鐘后,生才能進(jìn)入教室?

(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg且持續(xù)時間不低于10min時,才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?

查看答案和解析>>

同步練習(xí)冊答案