【題目】 (2013年四川南充3分) 如圖1,點E為矩形ABCD邊AD上一點,點P,點Q同時從點B出發(fā),點P沿BE→ED→DC 運動到點C停止,點Q沿BC運動到點C停止,它們運動的速度都是1cm/s,設(shè)P,Q出發(fā)t秒時,△BPQ的面積為ycm,已知y與t的函數(shù)關(guān)系的圖形如圖2(曲線OM為拋物線的一部分),則下列結(jié)論:①AD=BE=5cm;②當(dāng)0<t≤5時,;③直線NH的解析式為;④若△ABE與△QBP相似,則t=秒。其中正確的結(jié)論個數(shù)為【 】
A. 4 B. 3 C. 2 D. 1
【答案】B。
【解析】根據(jù)圖(2)可得,當(dāng)點P到達點E時點Q到達點C,
∵點P、Q的運動的速度都是1cm/秒,
∴BC=BE=5cm。∴AD=BE=5,故結(jié)論①正確。
如圖1,過點P作PF⊥BC于點F,
根據(jù)面積不變時△BPQ的面積為10,可得AB=4,
∵AD∥BC,∴∠AEB=∠PBF。
∴。
∴PF=PBsin∠PBF=t。
∴當(dāng)0<t≤5時,y=BQPF=tt=。故結(jié)論②正確。
根據(jù)5~7秒面積不變,可得ED=2,
當(dāng)點P運動到點C時,面積變?yōu)?,此時點P走過的路程為BE+ED+DC=11,故點H的坐標(biāo)為(11,0)。
設(shè)直線NH的解析式為y=kx+b,
將點H(11,0),點N(7,10)代入可得:,解得:。
∴直線NH的解析式為:。故結(jié)論③錯誤。
如圖2,當(dāng)△ABE與△QBP相似時,點P在DC上,
∵tan∠PBQ=tan∠ABE=,∴,即。
解得:t=。故結(jié)論④正確。
綜上所述,①②④正確,共3個。故選B。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接第十一屆少數(shù)民族傳統(tǒng)體育運動會,鄭州市園林局打算購買A,B兩種花裝點城區(qū)道路,負(fù)責(zé)人小李去花卉基地調(diào)查發(fā)現(xiàn):購買2盆A種花和3盆B種花需要23元,購買4盆A種花和2盆B種花需要26元.
(1)求A,B兩種花的單價各為多少元?
(2)鄭州市園林局若購買A, B兩種花共12000盆,且購買的A種花不少于3000盆,但不多于5000盆,若購買的A種花不超于3000盆時,花卉基地會給每盆A種花打8折,
①設(shè)購買的A種花m盆,總費用為W元,求w與m的關(guān)系式:
②請你幫小李設(shè)計一種購花方案使花費總少?并求出最少費用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=與x軸交于點A,點B,與y軸交于點C,點D與點C關(guān)于x軸對稱,點P是x軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P作x軸的垂線l交拋物線于點Q.
(1)求點A、點B、點C的坐標(biāo);
(2)求直線BD的解析式;
(3)當(dāng)點P在線段OB上運動時,直線l交BD于點M,試探究m為何值時,四邊形CQMD是平行四邊形;
(4)在點P的運動過程中,是否存在點Q,使△BDQ是以BD為直角邊的直角三角形?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在等邊三角形中,為邊上的高.
操作發(fā)現(xiàn):(1)如圖1,過點分別作,,垂足分別為.請直接寫出和的數(shù)量關(guān)系;
(2)如圖2,若點為上任意一點(不與重合),過點作,,垂足分別為.判斷和的數(shù)量關(guān)系,并說明理由;
拓廣探索:(3)如圖3,點為等邊三角形內(nèi)任意一點,過點作,,,垂足分別為,探究和的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:已知,如圖(1),在面積為S的△ABC中, BC=a,AC=b, AB=c,內(nèi)切圓O的半徑為r連接OA、OB、OC,△ABC被劃分為三個小三角形.
∴.
(1)類比推理:若面積為S的四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓),如圖(2),各邊長分別為AB=a,BC=b,CD=c,AD=d,求四邊形的內(nèi)切圓半徑r;
(2)理解應(yīng)用:如圖(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1與⊙O2分別為△ABD與△BCD的內(nèi)切圓,設(shè)它們的半徑分別為r1和r2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓的直徑,點O是圓心,點C是OA的中點,CD⊥OA交半圓于點D,點E是的中點,連接AE、OD,過點D作DP∥AE交BA的延長線于點P.
(1)求∠AOD的度數(shù);
(2)求證:PD是半圓O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李從如圖所示的二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面四條信息:①b2﹣4ac>0;②c>1;③ab>0;④a﹣b+c<0.你認(rèn)為其中正確的有( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以斜邊AB上一點O為圓心,OB為半徑作⊙O,交AC于點E,交AB于點D,且∠BEC=∠BDE.
(1)求證:AC是⊙O的切線;
(2)連接OC交BE于點F,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰上午8:00從家里出發(fā),騎“共享單車“去一家超市購物,然后從這家超市原路返回家中,小聰離家的路程(米)和經(jīng)過的時間(分)之間的函數(shù)關(guān)系如圖所示,下列說法正確的是( )
A.從小聰家到超市的路程是1300米B.小聰從家到超市的平均速度為100米/分
C.小聰在超市購物用時35分鐘D.小聰從超市返回家中的平均速度為26米/分
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com