【題目】如圖,將矩形ABCD沿著直線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)E,CD=6,BC=8,則DE的長度為________.
【答案】
【解析】
先根據(jù)折疊的性質(zhì)得到∠DBC=∠DBE,再由AD∥BC得到∠DBC=∠BDE,則∠DBE=∠BDE,于是可判斷BE=DE設(shè)AE=x,則DE=BE=8x,然后在Rt△ABE中利用勾股定理得到x2+62=(8x)2,再解方程即可求出AE,再得到DE的長.
∵△BDC′是由△BDC折疊得到,
∴∠DBC=∠DBE,
∵AD∥BC,
∴∠DBC=∠BDE,
∴∠DBE=∠BDE,
∴BE=DE
設(shè)AE=x,則DE=ADAE=BC-x=8x,BE=8x,
在Rt△ABE中,∵AE2+AB2=BE2,
∴x2+62=(8x)2,解得x=,
即AE=
∴DE=AD-AE=8-=
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用4個全等的直角三角形與1個小正方形鑲嵌而成的正方圖案,已知大正方形面積為10,小正方形面積為2,若用表示直角三角形的兩直角邊,下列四個說法:①;②;③;④.其中說法正確的有____________.(只填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個四邊形的兩條對角線互相垂直且相等,則稱這個四邊形為“奇妙四邊形”.如圖1,四邊形ABCD中,若AC=BD,AC⊥BD,則稱四邊形ABCD為奇妙四邊形.根據(jù)“奇妙四邊形”對角線互相垂直的特征可得“奇妙四邊形”的一個重要性質(zhì):“奇妙四邊形”的面積等于兩條對角線乘積的一半.根據(jù)以上信息回答:
(1)矩形 “奇妙四邊形”(填“是”或“不是”);
(2)如圖2,已知⊙O的內(nèi)接四邊形ABCD是“奇妙四邊形”,若⊙O的半徑為6,∠BCD=60°.求“奇妙四邊形”ABCD的面積;
(3)如圖3,已知⊙O的內(nèi)接四邊形ABCD是“奇妙四邊形”作OM⊥BC于M.請猜測OM與AD的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=6,BC=8,點(diǎn)E是BC邊上一點(diǎn),連接DE,把△DCE沿DE折疊,使點(diǎn)C落在點(diǎn)C′處,當(dāng)△BEC′為直角三角形時,BE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,F,G是直徑AB上的兩點(diǎn),C,D,E是半圓上的三點(diǎn),如果弧AC的度數(shù)為60°,弧BE的度數(shù)為20°,∠CFA=∠DFB,∠DGA=∠EGB.求∠FDG的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=,∠B=120°,點(diǎn)E是AD邊上的一個動點(diǎn)(不與A,D重合),EF∥AB交BC于點(diǎn)F,點(diǎn)G在CD上,DG=DE.若△EFG是等腰三角形,則DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1過點(diǎn)A(0,4)與點(diǎn)D(4,0),直線l2:y=x+1與x軸交于點(diǎn)C,兩直線l1,l2相交于點(diǎn)B.
(1)求直線l1的函數(shù)表達(dá)式;
(2)求點(diǎn)B的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點(diǎn)P在對角線AC上滑動,直角的一邊始終經(jīng)過點(diǎn)B,另一邊與射線DC相交于點(diǎn)Q,設(shè)A、P兩點(diǎn)間的距離為x.
探究:
(1)當(dāng)點(diǎn)Q在邊CD上時,線段PQ與線段PB之間有怎樣的大小關(guān)系?試證明你觀察到的結(jié)論;
(2)當(dāng)點(diǎn)Q在邊CD上時,設(shè)四邊形PBCQ的面積為y,求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;(3)當(dāng)點(diǎn)P在線段AC上滑動時,△PCQ是否能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點(diǎn)Q的位置,并求出相應(yīng)x的值;如果不可能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王曉同學(xué)要證明命題“對角線相等的平行四邊形是矩形”是正確的,她先作出了如圖所示的平行四邊形ABCD,并寫出了如下不完整的已知和求證.
已知:如圖,在平行四邊形ABCD中, .
求證:平行四邊形ABCD是 .
(1)在方框中填空,以補(bǔ)全已知和求證;
(2)按王曉的想法寫出證明過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com