【題目】某校教師開展了“練一手好字”的活動(dòng),校委會(huì)對部分教師練習(xí)字帖的情況進(jìn)行了問卷調(diào)查,問卷設(shè)置了“柳體”、“顏體”、”歐體“和”其他“類型,每位教師僅能選一項(xiàng),根據(jù)調(diào)查的結(jié)果繪制了如下統(tǒng)計(jì)表:
類別 | 柳體 | 顏體 | 歐體 | 其他 | 合計(jì) |
人數(shù) | 4 | 10 | 6 | ||
占的百分比 | 0.5 | 0.25 | 1 |
根據(jù)圖表提供的信息解答下列問題:
(1)這次問卷調(diào)查了多少名教師?
(2)請你補(bǔ)全表格.
(3)在調(diào)查問卷中,甲、乙、丙、丁四位教師選擇了“柳體”,現(xiàn)從以上四位教師中任意選出2名教師參加學(xué)校的柳體興趣小組,請你用畫樹狀圖或列表的方法,求選出的2人恰好是乙和丙兩位教師的概率.
【答案】(1)40;(2)詳見解析;(3).
【解析】分析:(1)用歐體的頻數(shù)除以其頻率即可求得樣本總數(shù);
(2)根據(jù)百分比=人數(shù)÷總?cè)藬?shù)分別求解可得;
(3)畫樹狀圖得出所有等可能的情況數(shù),找出恰好是丙與乙的情況,即可確定出所求概率.
詳解:(1)這次調(diào)查問卷中被調(diào)查的總?cè)藬?shù)為10÷0.25=40人;
(2)柳體的人數(shù)為40×0.5=20人,顏體所占的百分比為4÷40=0.1,其他所占百分比為6÷40=0.15,補(bǔ)全表格如下:
(3)畫樹狀圖,如圖所示:
所有等可能的情況有12種,其中恰好是丙與乙的情況有2種,∴P(丙和乙)==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形中,長為3,長為6,點(diǎn)從出發(fā)沿向以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)點(diǎn)從出發(fā)沿向以每秒2個(gè)單位的速度運(yùn)動(dòng)(當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng)).若運(yùn)動(dòng)的時(shí)間為秒,則三角形的面積為______(用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.
(1)出發(fā)2秒后,求PQ的長;
(2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),出發(fā)幾秒鐘后,△PQB能形成等腰三角形?
(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A在數(shù)軸上對應(yīng)的數(shù)是a,點(diǎn)B在數(shù)軸上對應(yīng)的數(shù)是b,且|a+4|+(b﹣1)2=0,現(xiàn)將A、B之間的距離記作|AB|,定義|AB|=|a﹣b|.
(1)求2019b+a的值;
(2)求|AB|的值;
(3)設(shè)點(diǎn)P在數(shù)軸上對應(yīng)的數(shù)是x,當(dāng)|PA|﹣|PB|=2時(shí),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科普小組有5名成員,身高(單位:cm)分別為:160,165,170,163,172,把身高160 cm的成員替換成一位165 cm的成員后,現(xiàn)科普小組成員的身高與原來相比,下列說法正確的是( )
A.平均數(shù)變小,方差變小B.平均數(shù)變大,方差變大
C.平均數(shù)變大,方差不變D.平均數(shù)變大,方差變小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=2x和y=-x的圖象分別為直線l1,l2,過點(diǎn)(1,0)作x軸的垂線交l1于點(diǎn)A1,過A1點(diǎn)作y軸的垂線交l2于點(diǎn)A2,過點(diǎn)A2作x軸的垂線交l1于點(diǎn)A3,過點(diǎn)A3作y軸的垂線交l2于點(diǎn)A4,…依次進(jìn)行下去,則點(diǎn)A2019的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABD中,AC⊥BD于點(diǎn)C, ,點(diǎn)E是AB的中點(diǎn),tanD=2,CE=1,求sin∠ECB的值和AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】改革開放40年以來,城鄉(xiāng)居民生活水平持續(xù)快速提升,居民教育、文化和娛樂消費(fèi)支出持續(xù)增長,已經(jīng)成為居民各項(xiàng)消費(fèi)支出中僅次于居住、食品煙酒、交通通信后的第四大消費(fèi)支出,如圖為北京市統(tǒng)計(jì)局發(fā)布的2017年和2018年我市居民人均教育、文化和娛樂消費(fèi)支出的折線圖.
說明:在統(tǒng)計(jì)學(xué)中,同比是指本期統(tǒng)計(jì)數(shù)據(jù)與上一年同期統(tǒng)計(jì)數(shù)據(jù)相比較,例如2018年第二季度與2017年第二季度相比較;環(huán)比是指本期統(tǒng)計(jì)數(shù)據(jù)與上期統(tǒng)計(jì)數(shù)據(jù)相比較,例如2018年第二季度與2018年第一季度相比較.
根據(jù)上述信息,下列結(jié)論中錯(cuò)誤的是( 。
A. 2017年第二季度環(huán)比有所提高
B. 2017年第三季度環(huán)比有所提高
C. 2018年第一季度同比有所提高
D. 2018年第四季度同比有所提高
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識(shí),求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com