【題目】如圖甲,,,,垂足分別為,且三個垂足在同一直線上.

1)證明:

2)已知地物線軸交于點,頂點為,如圖乙所示,若是拋物線上異于的點,使得,求點坐標(biāo)(提示:可結(jié)合第(1)小題的思路解答)

【答案】(1)證明見解析;(2)

【解析】

1)根據(jù)同角的余角相等求出∠A=CPD,然后求出△ABP△PCD相似,再根據(jù)相似三角形對應(yīng)邊成比例列式整理即可得證;

2)根據(jù)拋物線解析式求出點P的坐標(biāo)以及點A和點B的坐標(biāo),再過點PPCx軸于C,設(shè)AQy軸相交于D,然后求出PCAC的長,再根據(jù)(1)的結(jié)論求出OD的長,從而得到點D的坐標(biāo),利用待定系數(shù)法求出直線AD的解析式,與拋物線解析式聯(lián)立求解即可得到點Q的坐標(biāo).

1)證明:,,

,

,

,

,

;

2)過,,

設(shè),則Ex,0,

AE=x+1,QE=x2-2x-3,.

,則

解得,,

,

D1,0),

AD=2,PD=4.

由(1)得,

解得,(舍去),

當(dāng)時,,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,BCAD,∠B90°,AD邊落在平面直角坐標(biāo)系的x軸上,且點A5,0)、C0,3)、AD2.點P從點E(﹣50)出發(fā),沿x軸向點A以每秒1個單位長度的速度運動,到達點A時停止運動.運動時間為t秒.

1)∠BCD的度數(shù)為______°.

2)當(dāng)t_____時,PCD為等腰三角形.

3)如圖2,以點P為圓心,PC為半徑作⊙P

①求當(dāng)t為何值時,⊙P與四邊形ABCD的一邊(或邊所在的直線)相切.

②當(dāng)t______時,⊙P與四邊形ABCD的交點有兩個;當(dāng)t_____時,⊙P與四邊形ABCD的交點有三個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,)的頂點是,拋物線軸交于點,與直線交于點.過點軸于點,平移拋物線使其經(jīng)過點、得到拋物線),拋物線軸的另一個交點為.

(1)若,,,求點的坐標(biāo)

(2)若,求的值.

(3)若四邊形為矩形,,,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,山上有一座高塔,山腳下有一圓柱形建筑物平臺,高塔及山的剖面與圓柱形建筑物平臺的剖面ABCD在同一平面上,在點A處測得塔頂H的仰角為35°,在點D處測得塔頂H的仰角為45°,又測得圓柱形建筑物的上底面直徑AD6m,高CD2.8m,則塔頂端H到地面的高度HG為(

(參考數(shù)據(jù):,,

A.10.8mB.14mC.16.8mD.29.8m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,AB的直徑,C上一點,連接AC,過點C作直線D),點EDB上任意一點(點D、B除外),直線CE于點F.連接AF與直線CD交于點G.

1)求證:

2)若點EAD(點A除外)上任意一點,上述結(jié)論是否仍然成立?若成立,請畫出圖形并給予證明;若不成立,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

已知二次函數(shù)y=﹣x2+x+2的圖象與x軸交于A,B兩點(點B在點A的左側(cè)),與y軸交于點C

1)求點AB,C的坐標(biāo);

2)求證:ABC為直角三角形;

3)如圖,動點EF同時從點A出發(fā),其中點E以每秒2個單位長度的速度沿AB邊向終點B運動,點F以每秒個單位長度的速度沿射線AC方向運動.當(dāng)點F停止運動時,點E隨之停止運動.設(shè)運動時間為t秒,連結(jié)EF,將AEF沿EF翻折,使點A落在點D處,得到DEF.當(dāng)點FAC上時,是否存在某一時刻t,使得DCO≌△BCO?(點D不與點B重合)若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正五邊形ABCDE內(nèi)接于⊙O,過點A作⊙O的切線交對角線DB的延長線于點F,則下列結(jié)論不成立的是( 。

A. AEBD B. AB=BF C. AFCD D. DF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,D、E分別是BCCB延長線上的點,且,連接ADAE,BMCN分別是△ABE和△ACD的高線,垂足分別為MN, BGCH分別是∠ABE和∠ACD的平分線,分別交AEAD于點G、H.

證明:(1)ABE∽△DCA;

(2)sinMBG=sinNCH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx+3分別與x軸、y軸交于點A、C,直線ymx+分別與x軸、y軸交于點B、D,直線AC與直線BD相交于點M(﹣1,b

1)不等式x+3≤mx+的解集為   

2)求直線AC、直線BDx軸所圍成的三角形的面積.

查看答案和解析>>

同步練習(xí)冊答案