如圖,已知△ABC的面積為5,點(diǎn)M在AB邊上移動(dòng)(點(diǎn)M與點(diǎn)A、B不重合),MN∥BC,MN交AC于點(diǎn)N精英家教網(wǎng),連接BN.設(shè)
AM
AB
=x,S△MBN=y.
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)點(diǎn)E、F分別是邊AB,AC的中點(diǎn),設(shè)△MBN與△EBF的公共部分的面積為S,試用含x的代數(shù)式表示S;
(3)當(dāng)?shù)冢?)問(wèn)中的S=
1
5
時(shí),試確定x的值.(不必寫(xiě)出解題過(guò)程)
分析:(1)由MN∥BC可知△AMN∽△ABC,得到S△AMN:S△ABC=(
AM
AB
2,即S△AMN:5=x2,利用相似的面積比等于相似比的平方可求得S△MBN=-5x2+5x,即y=-5x2+5x(0<x<1);
(2)根據(jù)FE∥BC∥MN可知,
①當(dāng)0<x≤
1
2
時(shí),△MBN與△EBF的公共部分的三角形與△MBN相似,利用相似的面積比等于相似比的平方可求得S=
5x
4-4x
;
②當(dāng)
1
2
<x<1時(shí),△MBN與△EBF的公共部分的三角形與△EBF相似,利用相似的面積比等于相似比的平方可求得S=5(1-x)2;
(3)當(dāng)S=
1
5
時(shí),x=
4
29
或x=
4
5
解答:解:(1)∵M(jìn)N∥BC,∴△AMN∽△ABC
∴S△AMN:S△ABC=(
AM
AB
2,
即S△AMN:5=x2,
∵S△MBN:S△AMN=
1
x
-1,
∴S△MBN=-5x2+5x
∴y=-5x2+5x(0<x<1);

(2)∵E、F分別是邊AB,AC的中點(diǎn),∴FE∥BC∥MN,
①當(dāng)0<x≤
1
2
時(shí),△MBN與△EBF的公共部分的三角形與△MBN相似,
∴y:S=4(1-x)2,∴S=
5x
4-4x
,
②當(dāng)
1
2
<x<1時(shí),△MBN與△EBF的公共部分的三角形與△EBF相似,
∴S:S△BEF=4(1-x)2
∵S△BEF=
5
4
,
∴S=5(1-x)2

(3)當(dāng)S=
1
5
時(shí),x=
4
29
或x=
4
5
點(diǎn)評(píng):主要考查了相似三角形的性質(zhì)和根據(jù)實(shí)際問(wèn)題列二次函數(shù)關(guān)系式,其中涉及到直接開(kāi)平方法解一元二次方程的方法;要會(huì)根據(jù)幾何圖形之間的關(guān)系列一元二次方程,利用相似三角形的相似比是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC的面積S△ABC=1.
在圖1中,若
AA1
AB
=
BB1
BC
=
CC1
CA
=
1
2
,則S△A1B1C1=
1
4
;
在圖2中,若
AA2
AB
=
BB2
BC
=
CC2
CA
=
1
3
,則S△A2B2C2=
1
3
;
在圖3中,若
AA3
AB
=
BB3
BC
=
CC3
CA
=
1
4
,則S△A3B3C3=
7
16
;
按此規(guī)律,若
AA8
AB
=
BB8
BC
=
CC8
CA
=
1
9
,S△A8B8C8=
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC的面積為4,且AB=AC,現(xiàn)將△ABC沿CA方向平移CA的長(zhǎng)度,得到△EFA.
(1)判斷AF與BE的位置關(guān)系,并說(shuō)明理由;
(2)若∠BEC=15°,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•溫州二模)如圖,已知△ABC的面積是2平方厘米,△BCD的面積是3平方厘米,△CDE的面積是3平方厘米,△DEF的面積是4平方厘米,△EFG的面積是3平方厘米,△FGH的面積是5平方厘米,那么,△EFH的面積是
4
4
 平方厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•孝感模擬)如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,2)、B(-5,0)、C(-1,0).
(1)請(qǐng)直接寫(xiě)出點(diǎn)A關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△A1B1C1,再將△A1B1C1以C1為位似中心,放大2倍得到△A2B2C1,請(qǐng)畫(huà)出△A1B1C1和△A2B2C1,并寫(xiě)出一個(gè)點(diǎn)A2的坐標(biāo).(只畫(huà)一個(gè)△A2B2C1即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(-7,1),B(-3,3),C(-2,6).
(1)求作一個(gè)三角形,使它與△ABC關(guān)于y軸對(duì)稱;
(2)寫(xiě)出(1)中所作的三角形的三個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案