【題目】如圖在直角中,,點(diǎn)是中點(diǎn),連接,點(diǎn)為的中點(diǎn),過(guò)點(diǎn)作交線段的延長(zhǎng)線于點(diǎn),連接.
(1)求證:四邊形是菱形;
(2)在不添加任何輔助線的情況下,請(qǐng)直接寫出與面積相等三角形(不包含)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知PA、PB切⊙O于A、B兩點(diǎn),CD切⊙O于E,△PCD的周長(zhǎng)為20,sin∠APB=,則⊙O的半徑( )
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是某品牌的一款學(xué)生斜持包,其挎帶由單層部分、雙層部分和調(diào)節(jié)扣組成.設(shè)單層部分的長(zhǎng)度為xcm,雙層部分的長(zhǎng)度為ycm,經(jīng)測(cè)景,得到如下數(shù)據(jù):
x(cm) | 0 | 4 | 6 | 8 | 10 | … | 120 |
y(cm) | M | 58 | 57 | 56 | 55 | … | n |
(1)如圖2,在平面直角坐標(biāo)系中,以所測(cè)得數(shù)據(jù)中的x為橫坐標(biāo),以y為縱坐標(biāo),描出所表示的點(diǎn),并用平滑曲線連接,并根據(jù)圖象猜想求出該函數(shù)的解析式;
(2)若小花要購(gòu)買一個(gè)持帶長(zhǎng)為125cm的斜挎包,該款式的斜挎包是否滿足小花的需求?請(qǐng)說(shuō)明理由,(挎帶的總長(zhǎng)度=單層部分長(zhǎng)度+雙層部分長(zhǎng)度,其中調(diào)節(jié)扣的長(zhǎng)度忽略不計(jì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:
對(duì)于線段的垂直平分線我們有如下結(jié)論:到線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在線段的垂直平分線上.即如圖①,若PA=PB,則點(diǎn)P在線段AB的垂直平分線上.
請(qǐng)根據(jù)閱讀材料,解決下列問(wèn)題:
如圖②,直線CD是等邊△ABC的對(duì)稱軸,點(diǎn)D在AB上,點(diǎn)E是線段CD上的一動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)C、D重合),連結(jié)AE、BE,△ABE經(jīng)順時(shí)針旋轉(zhuǎn)后與△BCF重合.
(1)旋轉(zhuǎn)中心是點(diǎn) ,旋轉(zhuǎn)了 (度);
(2)當(dāng)點(diǎn)E從點(diǎn)D向點(diǎn)C移動(dòng)時(shí),連結(jié)AF,設(shè)AF與CD交于點(diǎn)P,在圖②中將圖形補(bǔ)全,并探究∠APC的大小是否保持不變?若不變,請(qǐng)求出∠APC的度數(shù);若改變,請(qǐng)說(shuō)出變化情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣2與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,﹣2),OB=4OA,tan∠BCO=2.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求拋物線的解析式;
(3)點(diǎn)M、N分別是線段BC、AB上的動(dòng)點(diǎn),點(diǎn)M從點(diǎn)B出發(fā)以每秒個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)N從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)M、N中的一點(diǎn)到達(dá)終點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過(guò)點(diǎn)M作MP⊥x軸于點(diǎn)E,交拋物線于點(diǎn)P.設(shè)點(diǎn)M、點(diǎn)N的運(yùn)動(dòng)時(shí)間為t(s),當(dāng)t為多少時(shí),△PNE是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線l:y=x-與x軸交于點(diǎn)B1,以OB1為邊長(zhǎng)作等邊三角形A1OB1,過(guò)點(diǎn)A1作A1B2平行于x軸,交直線l于點(diǎn)B2,以A1B2為邊長(zhǎng)作等邊三角形A2A1B2,過(guò)點(diǎn)A2作A2B3平行于x軸,交直線l于點(diǎn)B3,以A2B3為邊長(zhǎng)作等邊三角形A3A2B3,…,按此規(guī)律進(jìn)行下去,則點(diǎn)A3的橫坐標(biāo)為______;點(diǎn)A2018的橫坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在平面直角坐標(biāo)系xOy中,拋物線L:y=x2-4x+3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),頂點(diǎn)為C.
(1)求點(diǎn)C和點(diǎn)A的坐標(biāo).
(2)定義“L雙拋圖形”:直線x=t將拋物線L分成兩部分,首先去掉其不含頂點(diǎn)的部分,然后作出拋物線剩余部分關(guān)于直線x=t的對(duì)稱圖形,得到的整個(gè)圖形稱為拋物線L關(guān)于直線x=t的“L雙拋圖形”(特別地,當(dāng)直線x=t恰好是拋物線的對(duì)稱軸時(shí),得到的“L雙拋圖形”不變),
①當(dāng)t=0時(shí),拋物線L關(guān)于直找x=0的“L雙拋圖形”如圖所示,直線y=3與“L雙拋圖形”有______個(gè)交點(diǎn);
②若拋物線L關(guān)于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個(gè)交點(diǎn),結(jié)合圖象,直接寫出t的取值范圍:______;
③當(dāng)直線x=t經(jīng)過(guò)點(diǎn)A時(shí),“L雙拋圖形”如圖所示,現(xiàn)將線段AC所在直線沿水平(x軸)方向左右平移,交“L雙拋圖形”于點(diǎn)P,交x軸于點(diǎn)Q,滿足PQ=AC時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的直徑AB垂直于弦CD,垂足為點(diǎn)E,過(guò)點(diǎn)C作⊙O 的切線,交AB的延長(zhǎng)線于點(diǎn)P,聯(lián)結(jié)PD.
(1)判斷直線PD與⊙O的位置關(guān)系,并加以證明;
(2)聯(lián)結(jié)CO并延長(zhǎng)交⊙O于點(diǎn)F,聯(lián)結(jié)FP交CD于點(diǎn)G,如果CF=10,cos∠APC=,求EG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知頂點(diǎn)為的拋物線經(jīng)過(guò)點(diǎn),點(diǎn).
(1)求拋物線的解析式;
(2)如圖1,直線與軸相交于點(diǎn)軸相交于點(diǎn),拋物線與軸相交于點(diǎn),在直線上有一點(diǎn),若,求的面積;
(3)如圖2,點(diǎn)是折線上一點(diǎn),過(guò)點(diǎn)作軸,過(guò)點(diǎn)作軸,直線與直線相交于點(diǎn),連接,將沿翻折得到,若點(diǎn)落在軸上,請(qǐng)直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com