如圖所示,在點A和點B之間表示整數(shù)的點有________個.

答案:
解析:

設(shè)在點A和點B之間的點表示的數(shù)為x,則-<x<,這樣的整數(shù)點即整數(shù)x有-1,0,1,2,共有4個.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•來賓)在△AOB中,∠AOB=90°,AO=6厘米,BO=8厘米,分別以O(shè)B和OA所在直線為x軸,y軸建立平面直角坐標(biāo)系,如圖所示,動點M從點A開始沿AO方向以2厘米/秒的速度向點O移動,同時動點N從點O開始沿OB方向以4厘米/秒的速度向點B移動(其中一點到達終點時,另一點隨即停止移動).
(1)求過點A和點B的直線表達式;
(2)當(dāng)點M移動多長時間時,四邊形AMNB的面積最。坎⑶蟪鏊倪呅蜛MNB面積的最小值;
(3)在點M和點N移動的過程中,是否存在以O(shè),M,N為頂點的三角形與△AOB相似?若存在,請求出點M 和點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系中,矩形OABC的邊OA、OC分別在x軸、y軸的正半軸上,且B(2,1).矩形OABC繞點O按逆時針方向旋轉(zhuǎn)90°后得到矩形ODEF.拋物線y=-
14
x2+bx+c經(jīng)過E、B兩點.
(1)請直接寫出點D和點E的坐標(biāo);
(2)求該拋物線的解析式;
(3)在第一象限內(nèi)是否存在點P,使得以點O、A、P、Q為頂點的平行四邊形的面積是矩形OABC面積的2倍,且點P在拋物線上?若存在,求出點P、點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新課程學(xué)習(xí)手冊 數(shù)學(xué) 七年級下冊 配人教版 題型:022

如圖所示,在點A和點B之間表示整數(shù)的點有________個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年重慶市東城中學(xué)九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,在平面直角坐標(biāo)系xoy中,Rt△AOB的直角邊OB,OA分別在x軸上和y軸上,其中OA=2,OB=4,現(xiàn)將Rt△AOB繞著直角頂點O按逆時針方向旋轉(zhuǎn)90°得到△COD,已知一拋物線經(jīng)過C、D、B三點.
(1)求這條拋物線的解析式;
(2)連接DB,P是線段BC上一動點(P不與B、C重合),過點P作PE∥BD交CD于E,則當(dāng)△DEP面積最大時,求PE的解析式;
(3)作點D關(guān)于此拋物線對稱軸的對稱點F,連接CF交對稱軸于點M,拋物線上一動點R,x軸上一動點Q,則在拋物線上是否存在點R,x軸上是否存在點Q,使得以C、M、Q、R為頂點的四邊形是平行四邊形?如果存在,求出Q點的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年重慶市一中九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,在平面直角坐標(biāo)系xoy中,Rt△AOB的直角邊OB,OA分別在x軸上和y軸上,其中OA=2,OB=4,現(xiàn)將Rt△AOB繞著直角頂點O按逆時針方向旋轉(zhuǎn)90°得到△COD,已知一拋物線經(jīng)過C、D、B三點.
(1)求這條拋物線的解析式;
(2)連接DB,P是線段BC上一動點(P不與B、C重合),過點P作PE∥BD交CD于E,則當(dāng)△DEP面積最大時,求PE的解析式;
(3)作點D關(guān)于此拋物線對稱軸的對稱點F,連接CF交對稱軸于點M,拋物線上一動點R,x軸上一動點Q,則在拋物線上是否存在點R,x軸上是否存在點Q,使得以C、M、Q、R為頂點的四邊形是平行四邊形?如果存在,求出Q點的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案