【題目】小紅爸爸從家騎電瓶車出發(fā),沿一條直路到相距2400m的學(xué)校接小紅回家,小紅爸爸出發(fā)的同時(shí),小紅以96m/min的速度從學(xué)校沿同一條道路步行回家,小紅爸爸趕到學(xué)校校門口等候2min后知道小紅已離校,立即沿原路以原速返回,設(shè)他們出發(fā)的時(shí)間為t min,圖示中的折線OABD表示小紅爸爸與家之間的距離S1與t之間的函數(shù)關(guān)系,線段EF表示小紅與家之間的距離S2與t之間的函數(shù)關(guān)系,則小紅爸爸從家出發(fā)在返回途中追上小紅的時(shí)間是( )
A.12minB.16minC.18minD.20min
【答案】D
【解析】
根據(jù)圖象求出直線EF和直線BD的解析式,然后聯(lián)立即可求出交點(diǎn)C的坐標(biāo),則可得出答案.
根據(jù)小紅爸爸10分鐘到達(dá)學(xué)校,可得出小紅爸爸的速度為
∵小紅爸爸返回時(shí)速度與去時(shí)相同,
∴回去時(shí)的速度也為,回去的時(shí)間也為10min
設(shè)直線BD的直線解析式為
將點(diǎn)B(12,2400),D(22,0)代入解析式中得
解得
∴直線BD的直線解析式為
∵小紅的速度是96m/min
∴直線EF的直線解析式為
解得
∴小紅爸爸從家出發(fā)在返回途中追上小紅的時(shí)間是20min
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】太原雙塔寺又名永祚寺,是國家級(jí)文物保護(hù)單位,由于雙塔(舍利塔、文峰塔)聳立,被人們稱為“文筆雙塔”,是太原的標(biāo)志性建筑之一,某校社會(huì)實(shí)踐小組為了測量舍利塔的高度,在地面上的C處垂直于地面豎立了高度為2米的標(biāo)桿CD,這時(shí)地面上的點(diǎn)E,標(biāo)桿的頂端點(diǎn)D,舍利塔的塔尖點(diǎn)B正好在同一直線上,測得EC=4米,將標(biāo)桿CD向后平移到點(diǎn)C處,這時(shí)地面上的點(diǎn)F,標(biāo)桿的頂端點(diǎn)H,舍利塔的塔尖點(diǎn)B正好在同一直線上(點(diǎn)F,點(diǎn)G,點(diǎn)E,點(diǎn)C與塔底處的點(diǎn)A在同一直線上),這時(shí)測得FG=6米,GC=53米.
請你根據(jù)以上數(shù)據(jù),計(jì)算舍利塔的高度AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一海輪位于燈塔P的西南方向,距離燈塔40了2海里的A處,它沿正東方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東60°方向上的B處,求航程AB的值(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)同時(shí)滿足下列條件:對稱軸是;最值是;二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),其橫坐標(biāo)的平方和為,則的值是( )
A. 或 B. C. D. 或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知k為任意實(shí)數(shù),隨著k的變化,拋物線y=x2﹣2(k﹣1)x+k2﹣5的頂點(diǎn)隨之運(yùn)動(dòng),則頂點(diǎn)運(yùn)動(dòng)時(shí)經(jīng)過的路徑與兩條坐標(biāo)軸圍成圖形的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是一張矩形紙片,,把紙片對折,折痕為,展開后再過點(diǎn)折疊該紙片,使點(diǎn)落在上的點(diǎn)處,且折痕與相交于點(diǎn),再次展平后,連接,,并延長交于點(diǎn).
(1)求證:是等邊三角形;
(2)求,的長;
(3)為線段上一動(dòng)點(diǎn),是的中點(diǎn),則的最小值是 .(請直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是高,E、F分別是AB、AC的中點(diǎn).
(1)AB=12,AC=9,求四邊形AEDF的周長;
(2)EF與AD有怎樣的位置關(guān)系?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線y=x﹣3與x軸、y軸分別交于點(diǎn)A、B,拋物線y=x2+bx+c經(jīng)過點(diǎn)A、B,且交x軸于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)P為拋物線上一點(diǎn),且點(diǎn)P在AB的下方,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①試求當(dāng)m為何值時(shí),△PAB的面積最大;
②當(dāng)△PAB的面積最大時(shí),過點(diǎn)P作x軸的垂線PD,垂足為點(diǎn)D,問在直線PD上否存在點(diǎn)Q,使△QBC為直角三角形?若存在,直接寫出符合條件的Q的坐標(biāo)若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com