分析:由二次函數(shù)y=2x
2+8x+7可知,此函數(shù)的對(duì)稱軸為x=-2,頂點(diǎn)坐標(biāo)為(-2,-
),二次項(xiàng)系數(shù)a=2>0,故此函數(shù)的圖象開口向上,有最小值,設(shè)點(diǎn)(1
,y
3)關(guān)于x=-2的對(duì)稱點(diǎn)為A,根據(jù)二次函數(shù)的性質(zhì)可知點(diǎn)A′的坐標(biāo)為(-
,y
3),因?yàn)槎魏瘮?shù)y=2x
2+8x+7的圖象開口向上,有最小值,在對(duì)稱軸的左側(cè)為減函數(shù),故看判斷y
2>y
3>y
1.
解答:解:∵對(duì)稱軸為x=-2,頂點(diǎn)坐標(biāo)為(-2,-
),二次項(xiàng)系數(shù)a=2>0
∴此函數(shù)的圖象開口向上,有最小值,x=-2時(shí)y=-
設(shè)點(diǎn)(1
,y
3)關(guān)于x=-2的對(duì)稱點(diǎn)為A,橫坐標(biāo)為a,則
=-2
∴a=-
∴點(diǎn)A′的坐標(biāo)為(-
,y
3)
∴x=2時(shí)y=-
,故y
1最小
∵-5
<-
<-2
∴y
2>y
3>y
1.
故選A.
點(diǎn)評(píng):本題的關(guān)鍵是(1)找到二次函數(shù)的對(duì)稱軸;(2)掌握二次函數(shù)y=ax2+bx+c(a≠0)的圖象性質(zhì).