【題目】已知:如圖16,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.

(1)求拋物線的解析式.

(2)若點(diǎn)D是線段AC下方拋物線上的動點(diǎn),求四邊形ABCD面積的最大值.

(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上.是否存在以A,C,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

【答案】(1)y=x2x-3;(2) 當(dāng)m=-2時,S四邊形ABCD有最大值,最大值為;(3)存在,點(diǎn)P的坐標(biāo)為(-3,-3)或

【解析】

1)先求出拋物線的對稱軸,再由OC3OB3,a>0,即可求得C點(diǎn)坐標(biāo),由B(1,0)、C(0,-3)根據(jù)待定系數(shù)法即可求出函數(shù)解析式;

2)過點(diǎn)DDM∥y軸分別交線段ACx軸于點(diǎn)M、N。先表示出四邊形ABCD的面積,再求出直線AC的函數(shù)解析式,即可表示出DM的長,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)果;

分情況討論:過點(diǎn)CCP1∥x軸交拋物線于點(diǎn)P1,過點(diǎn)P1P1E1∥ACx軸于點(diǎn)E1,此時四邊形ACP1E1為平行四邊形,如圖,平移直線ACx軸于點(diǎn)E,交x軸上方的拋物線于點(diǎn)P,當(dāng)ACPE時,四邊形ACEP為平行四邊形。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10如圖,已知ABC為等邊三角形,點(diǎn)D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點(diǎn)F。

1求證:ABE≌△CAD;2BFD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,.點(diǎn)開始沿邊向點(diǎn)的速度移動,與此同時,點(diǎn)從點(diǎn)開始沿邊向點(diǎn)的速度移動.如果、分別從、同時出發(fā),當(dāng)點(diǎn)運(yùn)動到點(diǎn)時,兩點(diǎn)停止運(yùn)動,問:

經(jīng)過幾秒,的面積等于?

(2)的面積會等于嗎?若會,請求出此時的運(yùn)動時間;若不會,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線

當(dāng)拋物線的頂點(diǎn)在軸上時,求該拋物線的解析式;

不論取何值時,拋物線的頂點(diǎn)始終在一條直線上,求該直線的解析式;

若有兩點(diǎn),,且該拋物線與線段始終有交點(diǎn),請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=2AC=AD,請增加一個條件,使ABC≌△AED,你添加的條件是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

小聰遇到這樣一個有關(guān)角平分線的問題:如圖1,在中,,平分,,,求的長.

小聰思考:因?yàn)?/span>平分,所以可在邊上取點(diǎn),使,連接.這樣很容易得到,經(jīng)過推理能使問題得到解決(如圖2).

請回答:(1   三角形.

2的長為   

參考小聰思考問題的方法,解決問題:

3)如圖3,已知中,平分,.求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=ACB=30°,DBC上一點(diǎn),且∠DAB=45°

(1) 求∠DAC的度數(shù).

(2) 求證:ACD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)研究發(fā)現(xiàn),一般情況下,在一節(jié)分鐘的課中,學(xué)生的注意力隨學(xué)習(xí)時間的變化而變化.開始學(xué)習(xí)時,學(xué)生的注意力逐步增強(qiáng),中間有一段時間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實(shí)驗(yàn)分析可知,學(xué)生的注意力指標(biāo)數(shù)隨時間(分鐘)的變化規(guī)律如下圖所示(其中、分別為線段,為雙曲線的一部分).

求注意力指標(biāo)數(shù)與時間(分鐘)之間的函數(shù)關(guān)系式;

開始學(xué)習(xí)后第分鐘時與第分鐘時相比較,何時學(xué)生的注意力更集中?

某些數(shù)學(xué)內(nèi)容的課堂學(xué)習(xí)大致可分為三個環(huán)節(jié):即教師引導(dǎo),回顧舊知;自主探索,合作交流;總結(jié)歸納,鞏固提高.其中教師引導(dǎo),回顧舊知環(huán)節(jié)分鐘;重點(diǎn)環(huán)節(jié)自主探索,合作交流這一過程一般

需要分鐘才能完成,為了確保效果,要求學(xué)習(xí)時的注意力指標(biāo)數(shù)不低于.請問這樣的課堂學(xué)習(xí)安排是否合理?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的文字后,解答問題:

有這樣一道題目:“如圖,E、D是△ABCBC邊上的兩點(diǎn),ADAE,   .求證△ABE≌△ACD.請根據(jù)你的理解,在題目中的空格內(nèi),把原題補(bǔ)充完整(添加一個適當(dāng)?shù)臈l件),并寫出證明過程.

查看答案和解析>>

同步練習(xí)冊答案