【題目】如圖,,,點(diǎn)邊上,,相交于點(diǎn)

1)求證:;

2)若,求的度數(shù).

【答案】1)見(jiàn)解析(270

【解析】

1)根據(jù)全等三角形的判定即可判斷△AEC≌△BED,即可求解;

2)由(1)可知:ECED,∠C=∠BDE,根據(jù)等腰三角形的性質(zhì)即可知∠C的度數(shù),從而可求出∠BDE的度數(shù).

1)∵AEBD相交于點(diǎn)O,

∴∠AOD=∠BOE

在△AOD和△BOE中,

A=∠B,

∴∠BEO=∠2

又∵∠1=∠2,

∴∠1=∠BEO

∴∠AEC=∠BED

在△AEC和△BED中,

∴△AEC≌△BED(ASA).∴ED=EC

2)∵△AEC≌△BED,

ECED,∠C=∠BDE

在△EDC中,

ECED,∠140,

∴∠C=∠EDC70,

∴∠BDE=∠C70

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】半期考試來(lái)臨,元元到文具店購(gòu)買(mǎi)考試用的鉛筆,簽字筆和鋼筆,其中鉛筆每支8元,簽字筆每支l0元,鋼筆每支20元,若他一共用了122元,那么他最多能買(mǎi)鋼筆_______支.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形沿折疊,使頂點(diǎn)恰好落在邊的中點(diǎn)處,若,,則的長(zhǎng)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 為更新果樹(shù)品種,某果園計(jì)劃新購(gòu)進(jìn)A、B兩個(gè)品種的果樹(shù)苗栽植培育,若計(jì)劃購(gòu)進(jìn)這兩種果樹(shù)苗共45棵,其中A種苗的單價(jià)為7元/棵,購(gòu)買(mǎi)B種苗所需費(fèi)用y(元)與購(gòu)買(mǎi)數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.

1)求yx的函數(shù)關(guān)系式;

2)若在購(gòu)買(mǎi)計(jì)劃中,B種苗的數(shù)量不超過(guò)35棵,但不少于A種苗的數(shù)量,請(qǐng)?jiān)O(shè)計(jì)購(gòu)買(mǎi)方案,使總費(fèi)用最低,并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥ABAE=CE.求證:

1△AEF≌△CEB;

2AF=2CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中∠BAC90°,D,E分別是AB,BC的中點(diǎn),FCA的延長(zhǎng)線上∠FDA=∠B,AC6,AB8,則四邊形AEDF的周長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ACBD交于點(diǎn)E,點(diǎn)EBD的中點(diǎn),延長(zhǎng)CD到點(diǎn)F,使DFCD,連接AF,

1)求證:AECE

2)求證:四邊形ABDF是平行四邊形;

3)若AB2,AF4,∠F30°,則四邊形ABCF的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在中,分別垂直平分,交于點(diǎn),,若,則______,若的周長(zhǎng)為,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠C=90°,AC=,BC=2AC,半徑為2的⊙C,分別交AC、BC于點(diǎn)D、E,得到

(1)求證:AB為⊙C的切線;

(2)求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案