如圖,AB⊥CD,CD⊥BD,∠A=∠FEC.以下是小貝同學證明CD∥EF的推理過程或理由,請你在橫線上補充完整其推理過程或理由.
證明:∵AB⊥CD,CD⊥BD(已知)
∴∠ABD=∠CDB=90°( )∴∠ABD+∠CDB=180°.
∴AB∥( )( )
∵∠A=∠FEC(已知)
∴AB∥( ( )
∴CD∥EF( )
垂直定義;CD;同旁內(nèi)角互補,兩直線平行;EF;同位角相等,兩直線平行;平行于同一條直線的兩直線平行.
解析試題分析:由AB垂直于BD,CD垂直于BD,得到一對直角相等,進而確定出一對同旁內(nèi)角互補,利用同旁內(nèi)角互補兩直線平行得到AB與CD平行,再由已知同位角相等得到AB與EF平行,利用平行于同一條直線的兩直線平行即可得證.
試題解析:證明:∵AB⊥BD,CD⊥BD(已知),
∴∠ABD=∠CDB=90°(垂直定義),
∴∠ABD+∠CDB=180°.
∴AB∥CD(同旁內(nèi)角互補,兩直線平行),
∵∠A=∠FEC(已知),
∴AB∥EF(同位角相等,兩直線平行),
∴CD∥EF(平行于同一條直線的兩條直線平行).
考點:平行線的判定與性質(zhì).
科目:初中數(shù)學 來源: 題型:解答題
【問題提出】如果我們身邊沒有量角器和三角板,如何作15°大小的角呢?
【實踐操作】如圖.
第一步:對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開,得到AD∥EF∥BC.
第二步:再一次折疊紙片,使點A落在EF上的點N處,并使折痕經(jīng)過點B,得到折痕BM.折痕BM 與折痕EF相交于點P.連接線段BN,PA,得到PA=PB=PN.
【問題解決】
(1)求∠NBC的度數(shù);
(2)通過以上折紙操作,還得到了哪些不同角度的角?請你至少再寫出兩個(除∠NBC的度數(shù)以外).
(3)你能繼續(xù)折出15°大小的角了嗎?說說你是怎么做的.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com