【題目】如圖①,在△ABC中,AB=AC,過AB上一點(diǎn)D作DE∥AC交BC于點(diǎn)E,以E為頂點(diǎn),ED為一邊,作∠DEF=∠A,另一邊EF交AC于點(diǎn)F.
(1)求證:四邊形ADEF為平行四邊形;
(2)當(dāng)點(diǎn)D為AB中點(diǎn)時(shí),判斷ADEF的形狀;
(3)延長圖①中的DE到點(diǎn)G,使EG=DE,連接AE,AG,F(xiàn)G,得到圖②,若AD=AG,判斷四邊形AEGF的形狀,并說明理由.
【答案】(1)證明見解析;(2)ADEF的形狀為菱形,理由見解析;(3)四邊形AEGF是矩形,理由見解析.
【解析】
(1)根據(jù)平行線的性質(zhì)得到∠BDE=∠A,根據(jù)題意得到∠DEF=∠BDE,根據(jù)平行線的判定定理得到AD∥EF,根據(jù)平行四邊形的判定定理證明;
(2)根據(jù)三角形中位線定理得到DE=AC,得到AD=DE,根據(jù)菱形的判定定理證明;
(3)根據(jù)等腰三角形的性質(zhì)得到AE⊥EG,根據(jù)有一個(gè)角是直角的平行四邊形是矩形證明.
(1)證明:∵DE∥AC,
∴∠BDE=∠A,
∵∠DEF=∠A,
∴∠DEF=∠BDE,
∴AD∥EF,又∵DE∥AC,
∴四邊形ADEF為平行四邊形;
(2)解:□ADEF的形狀為菱形,
理由如下:∵點(diǎn)D為AB中點(diǎn),
∴AD=AB,
∵DE∥AC,點(diǎn)D為AB中點(diǎn),
∴DE=AC,
∵AB=AC,
∴AD=DE,
∴平行四邊形ADEF為菱形,
(3)四邊形AEGF是矩形,
理由如下:由(1)得,四邊形ADEF為平行四邊形,
∴AF∥DE,AF=DE,
∵EG=DE,
∴AF∥DE,AF=GE,
∴四邊形AEGF是平行四邊形,
∵AD=AG,EG=DE,
∴AE⊥EG,
∴四邊形AEGF是矩形.
故答案為:(1)證明見解析;(2)菱形;(3)矩形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,BE∥DF,∠DBE和∠CDF的角平分線交于點(diǎn)G.當(dāng)∠BGD=65°時(shí),∠BDC=________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,過AB的中點(diǎn)E作AC的垂線EF,交AD于點(diǎn)M,交CD的延長線于點(diǎn)F.
(1)證明:;
(2)若,求當(dāng)形ABCD的周長;
(3)在沒有輔助線的前提下,圖中共有_________對相似三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在數(shù)軸上有三個(gè)點(diǎn)A,B,C,回答下列問題:(注意:本題直接寫出答案即可)
(1)A,C兩點(diǎn)間的距離是多少?
(2)數(shù)軸上存在點(diǎn)D,點(diǎn)D到點(diǎn)A的距離等于點(diǎn)D到點(diǎn)C的距離問點(diǎn) D對應(yīng)的數(shù)是多少?
(3)若點(diǎn)E與點(diǎn)B的距離是8,則E點(diǎn)表示的數(shù)是什么?
(4)若F點(diǎn)與A點(diǎn)的距離是,請你寫出F點(diǎn)表示的數(shù)是多少?(用含字母a的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題有( 。偻詢(nèi)角互補(bǔ);②長度為2、3、5的三條線段可以構(gòu)成三角形;③平方根、立方根是它本身的數(shù)是0和1;④和﹣|﹣2|互為相反數(shù);⑤4<<5;⑥在同一平面內(nèi),如果a∥b,a⊥c.那么b⊥c.
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,∠ABC=60°,P是射線BD上一動(dòng)點(diǎn),以AP為邊向右側(cè)作等邊△APE,連接CE.
(1)如圖1,當(dāng)點(diǎn)P在菱形ABCD內(nèi)部時(shí),則BP與CE的數(shù)量關(guān)系是 ,CE與AD的位置關(guān)系是 .
(2)如圖2,當(dāng)點(diǎn)P在菱形ABCD外部時(shí),(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,請說明理由;
(3)如圖2,連接BE,若AB=2,BE=2,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CN是等邊△的外角內(nèi)部的一條射線,點(diǎn)A關(guān)于CN的對稱點(diǎn)為D,連接AD,BD,CD,其中AD,BD分別交射線CN于點(diǎn)E,P.
(1)依題意補(bǔ)全圖形;
(2)若,求的大小(用含的式子表示);
(3)用等式表示線段, 與之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,菱形ABCD中,∠A=60°,點(diǎn)P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運(yùn)動(dòng)到D終止,點(diǎn)Q從A與P同時(shí)出發(fā),沿邊AD勻速運(yùn)動(dòng)到D終止,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).△APQ的面積S(cm2)與t(s)之間函數(shù)關(guān)系的圖象由圖2中的曲線段OE與線段EF、FG給出.
(1)求點(diǎn)Q運(yùn)動(dòng)的速度;
(2)求圖2中線段FG的函數(shù)關(guān)系式;
(3)問:是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com