【題目】如圖(1)在正方形ABCD中,點(diǎn)ECD邊上一動(dòng)點(diǎn),連接AE,作BFAE,垂足為GADF

1)求證:AFDE;

2)連接DG,若DG平分∠EGF,如圖(2),求證:點(diǎn)ECD中點(diǎn);

3)在(2)的條件下,連接CG,如圖(3),求證:CGCD

【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(3CGCD,見(jiàn)解析.

【解析】

(1)證明△BAF≌△ADE(ASA)即可解決問(wèn)題.

(2)過(guò)點(diǎn)D作DM⊥GF,DN⊥GE,垂足分別為點(diǎn)M,N.想辦法證明AF=DF,即可解決問(wèn)題.

(3)延長(zhǎng)AE,BC交于點(diǎn)P,由(2)知DE=CD,利用直角三角形斜邊中線的性質(zhì),只要證明BC=CP即可.

(1)證明:如圖1中,

在正方形ABCD中,AB=AD,∠BAD=∠D=90o,

∴∠2+∠3=90°

又∵BF⊥AE,

∴∠AGB=90°

∴∠1+∠2=90°,

∴∠1=∠3

在△BAF與△ADE中,

∠1=∠3 BA=AD ∠BAF=∠D,

∴△BAF≌△ADE(ASA)

∴AF=DE.

(2)證明:過(guò)點(diǎn)D作DM⊥GF,DN⊥GE,垂足分別為點(diǎn)M,N.

由(1)得∠1=∠3,∠BGA=∠AND=90°,AB=AD

∴△BAG≌△ADN(AAS)

∴AG=DN,

又DG平分∠EGF,DM⊥GF,DN⊥GE,

∴DM=DN,

∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF

∴△AFG≌△DFM(AAS),

∴AF=DF=DE=AD=CD,

即點(diǎn)E是CD的中點(diǎn).

(3)延長(zhǎng)AE,BC交于點(diǎn)P,由(2)知DE=CD,

∠ADE=∠ECP=90°,∠DEA=∠CEP,

∴△ADE≌△PCE(ASA)

∴AE=PE,

又CE∥AB,

∴BC=PC,

在Rt△BGP中,∵BC=PC,

∴CG=BP=BC,

∴CG=CD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】立定跳遠(yuǎn)是嘉興市體育中考的抽考項(xiàng)目之一,某校九年級(jí)(1),(2)班準(zhǔn)備集體購(gòu)買某品牌的立定跳遠(yuǎn)訓(xùn)練鞋.現(xiàn)了解到某網(wǎng)店正好有這種品牌訓(xùn)練鞋的促銷活動(dòng),其購(gòu)買的單價(jià)y(元/雙)與一次性購(gòu)買的數(shù)量x(雙)之間滿足的函數(shù)關(guān)系如圖所示.

1)當(dāng)10≤x60時(shí),求y關(guān)于x的函數(shù)表達(dá)式;

2)九(1),(2)班共購(gòu)買此品牌鞋子100雙,由于某種原因需分兩次購(gòu)買,且一次購(gòu)買數(shù)量多于25雙且少于60雙;

①若兩次購(gòu)買鞋子共花費(fèi)9200元,求第一次的購(gòu)買數(shù)量;

②如何規(guī)劃兩次購(gòu)買的方案,使所花費(fèi)用最少,最少多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCDAEFG都是正方形,當(dāng)正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖,連接DGBE,并延長(zhǎng)BEDG于點(diǎn)H,且BHDGH,若AB=4,AE=時(shí),則線段BH的長(zhǎng)是( 。

A. B. 16C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,CBG=A,CD為直徑,OCAB相交于點(diǎn)E,過(guò)點(diǎn)EEFBC,垂足為F,延長(zhǎng)CDGB的延長(zhǎng)線于點(diǎn)P,連接BD.

(1)求證:PG與⊙O相切;

(2)若=,求的值;

(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,(k+12k2+2k+1,變形得:(k+12k22k+1,對(duì)上面的等式,依次令k1,23,得:

1個(gè)等式:22122×1+1

2個(gè)等式:32222×2+1

3個(gè)等式:42322×3+1

1)按規(guī)律,寫出第n個(gè)等式(用含n的等式表示):第n個(gè)等式   

2)記S11+2+3+…+n,將這n個(gè)等式兩邊分別相加,你能求出S1的公式嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,函數(shù)的圖象G與直線ly=﹣x+7交于A1,a),B兩點(diǎn).

1)求k的值;

2)記圖象G在點(diǎn)A,B之間的部分與線段AB圍成的區(qū)域(不含邊界)為W.點(diǎn)P在區(qū)域W內(nèi),若點(diǎn)P的橫縱坐標(biāo)都為整數(shù),直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知O的直徑AE10cm,∠B=∠EAC,則AC的長(zhǎng)為( 。

A. 5cm B. 5cm C. 5 cm D. 6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖直線y1=-x+4y2=x+b都與雙曲線y=交于點(diǎn)A1,m),這兩條直線分別與x軸交于BC兩點(diǎn)

1)求k的值;

2)直接寫出當(dāng)x0時(shí),不等式x+b的解集;

3)若點(diǎn)Px軸上,連接AP,且AP把△ABC的面積分成12兩部分,求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形ABOC的邊OBx軸上,過(guò)點(diǎn)C(3,4)的雙曲線與AB交于點(diǎn)D,且AC=2AD,則點(diǎn)D的坐標(biāo)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案