【題目】已知AB兩地的實際距離是2000m,在地圖上量得這兩地的距離為2m,這幅地圖的比例尺為_____

【答案】11000

【解析】

根據(jù)比例尺的定義求解.

這幅地圖的比例尺為2200011000

故答案為:11000

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=30°,以AB為直徑的⊙O經(jīng)過點C.過點C作⊙O的切線交AB的延長線于點P.點D為圓上一點,且 ,弦AD的延長線交切線PC于點E,連接BC

(1)判斷OBBP的數(shù)量關(guān)系,并說明理由;

(2)若⊙O的半徑為2,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果三條線段之比是:(1)2:2:3;(2)2:3:5;(3)1:4:6;(4)3:4:5,其中能構(gòu)成三角形的有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點A(1,﹣3),B(m,3)在同一反比例函數(shù)的圖象上,則m的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果∠A和∠B是同旁內(nèi)角,且∠A=60°,則∠B的度數(shù)是( 。
A.60°
B.120°
C.60°或120°
D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知三角形三邊之長能求出三角形的面積嗎?
海倫公式告訴你計算的方法是:S= ,其中S表示三角形的面積,a,b,c分別表示三邊之長,p表示周長之半,即p=
我國宋代數(shù)學家秦九韶提出的“三斜求積術(shù)”與這個公式基本一致,所有這個公式也叫“海倫﹣秦九韶公式”.
請你利用公式解答下列問題.
(1)在△ABC中,已知AB=5,BC=6,CA=7,求△ABC的面積;
(2)計算(1)中△ABC的BC邊上的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學完一元一次方程解法,數(shù)學老師出了一道解方程題目:

.李銘同學的解題步驟如下:

解:去分母,得3(x1)2(23x)1;……

去括號,得3x346x1; ……

移項,得3x6x134……

合并同類項,得-3x2; ……

系數(shù)化為1,得x=- ……

1)聰明的你知道李銘的解答過程在第_________(填序號)出現(xiàn)了錯誤,出現(xiàn)上面錯誤的原因是違背了____.(填序號)①去括號法則;②等式的性質(zhì)1;③等式的性質(zhì)2④加法交換律.

2)請你寫出正確的解答過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,M為線段AB的中點,C點將線段MB分成MCCB=12的兩部分,若MC=2求線段AB的長.

(l)、(2)中任選一道小題解答.

1認真閱讀,理解題意,把解題過程補充完整:

解:因為MCCB=12MC=2

所以CB=____

所以MB=____+____=6

因為MAB中點,

所以AB=____ . MB=____

2若你有別的計算方法,也可以獨立完成.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4)

(1)請畫出將ABC向左平移4個單位長度后得到的圖形△A1B1C1;

(2)請畫出ABC關(guān)于原點O成中心對稱的圖形△A2B2C2;

(3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標.

查看答案和解析>>

同步練習冊答案