精英家教網 > 初中數學 > 題目詳情

【題目】如圖,正方形ABCD中,點E,F分別在邊CD,BC上,且∠EAF=45°,BD分別交AE,AF于點M,N,以點A為圓心,AB長為半徑畫弧BD.下列結論:①DE+BF=EF;②BN2+DM2=MN2;③△AMN∽△AFE;④ 與EF相切;⑤EF∥MN.其中正確結論的個數是( )

A.5個
B.4個
C.3個
D.2個

【答案】B
【解析】延長CB到G,使BG=DE,連接AG.

在△ABG和△ADE中, ,

∴△ABG≌△ADE,

∴AG=AE,∠DAE=∠BAG,

又∵∠EAF=45°,∠DAB=90°,

∴∠DAE+∠BAF=45°

∴∠GAF=∠EAF=45°.

在△AFG和△AFE中,

,

∴△AFG≌△AFE,

∴GF=EF=BG+BF,

又∵DE=BG,

∴EF=DE+BF;故①正確;

在AG上截取AH=AM.

在△AHB和△AMD中, ,

∴△AHB≌△AMD,

∴BH=DM,∠ABH=∠ADB=45°,

又∵∠ABD=45°,

∴∠HBN=90°.

∴BH2+BN2=HN2

在△AHN和△AMN中,

,

∴△AHN≌△AMN,

∴MN=HN.

∴BN2+DM2=MN2;故②正確;

∵AB∥CD,

∴∠DEA=∠BAM.

∵∠AEF=∠AED,∠BAM=180°﹣∠ABM﹣∠AMN=180°﹣∠MAN﹣∠AMN=∠AND,

∴∠AEF=∠ANM,

又∠MAN=∠FAE,

∴△AMN∽△AFE,故③正確;

過A作AP⊥EF于P,

∵∠AED=∠AEP,AD⊥DE,

∴AP=AD,

與EF相切;故④正確;

∵∠ANM=∠AEF,而∠ANM不一定等于∠AMN,

∴∠AMN不一定等于∠AEF,

∴MN不一定平行于EF,故⑤錯誤,

所以答案是:B.

【考點精析】利用正方形的性質和切線的性質定理對題目進行判斷即可得到答案,需要熟知正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某小區(qū)為了綠化環(huán)境,計劃分兩次購進A、B兩種花草,第一次分別購進A、B兩種花草30棵和15棵,共花費675元;第二次分別購進A、B兩種花草12棵和5棵.兩次共花費940元(兩次購進的A、B兩種花草價格均分別相同).
(1)A,B兩種花草每棵的價格分別是多少元?
(2)若購買A,B兩種花草共31棵,且B種花草的數量少于A種花草的數量的2倍,請你給出一種費用最省的方案,并求出該方案所需費用.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖,其對稱軸為直線x=﹣1,給出下列結果:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.
則正確的結論是( )

A.(1)(2)(3)(4)
B.(2)(4)(5)
C.(2)(3)(4)
D.(1)(4)(5)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,ABBC,按以下步驟作圖:以A為圓心,小于AD的長為半徑畫弧,分別交AB、CDEF;再分別以E、F為圓心,大于EF的長半徑畫弧,兩弧交于點G;作射線AGCD于點H.則下列結論:①AG平分∠DAB,CH=DH,③△ADH是等腰三角形,④SADH=S四邊形ABCH

其中正確的有( 。

A. ①②③ B. ①③④ C. ②④ D. ①③

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,∠A20°,沿BE將此三角形對折,又沿BA′再一次對折,點C落在BE上的C′處,此時∠C′DB74°,則原三角形的∠C的度數為(

A.27°B.59°C.69°D.79°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在扇形OAB中,∠AOB=90°,半徑OA=2 ,將扇形OAB沿過點B的直線折疊,點O恰好落在 上的點D處,折痕交OA于點C,則陰影部分的面積是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,把矩形紙片ABCD沿EF折疊,使點B落在邊AD上的點B′處,點A落在點A′處,已知AD=10,CD=4,B′D=2.

(1)求證:B′E=BF;

(2)求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某莊有甲、乙兩家草莓采摘園的草莓銷售價格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進園需購買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進園不需購買門票,采摘的草莓超過一定數量后,超過部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費用為(元),在乙園所需總費用為(元),之間的函數關系如圖所示.

1)甲采摘園的門票是_____,兩個采摘園優(yōu)惠前的草莓單價是每千克____;

2)當時,求的函數表達式;

3)游客在“春節(jié)期間”采摘多少千克草莓時,甲、乙兩家采摘園的總費用相同.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(列二元一次方程組解應用題)某公司共有3個一樣規(guī)模的大餐廳和2個一樣規(guī)模的小餐廳,經過測試同時開放2個大餐廳和1個小餐廳,可供300名員工就餐;同時開放1個大餐廳,1個小餐廳,可供170名員工就餐.

(1)請問1個大餐廳、1個小餐廳分別可供多少名員工就餐;

(2)如果3個大餐廳和2個小餐廳全部開放,那么能否供全體450名員工就餐?請說明理由.

查看答案和解析>>

同步練習冊答案