(2004•揚州)如圖,反比例函數(shù)y=(k<0)的圖象經(jīng)過點A(-,m),過A作AB⊥x軸于點B,△AOB的面積為.?
(1)求k和m的值;?
(2)若過A點的直線y=ax+b與x軸交于C點,且∠ACO=30°,求此直線的解析式.

【答案】分析:(1)根據(jù)面積求m,再根據(jù)A點坐標(biāo)求k;
(2)因為要滿足∠ACO=30°這個條件,所以必須分類討論:C點在負(fù)半軸、C點在正半軸.求C點坐標(biāo)后再求直線解析式.
解答:解:(1)S△AOB=•OB•AB=וm=
∴m=2,A(-,2)
∵反比例函數(shù)y=(k<0)的圖象經(jīng)過點A
∴k=-2;

(2)分類討論:
①C點在負(fù)半軸.在△ABC中,AB=2,∠C=30°,
∴BC=2,C(-3,0);
解方程組
所以直線解析式為y=x+3.
②C點在正半軸.在△ABC中,AB=2,∠C=30°,
∴BC=2,C(,0);
解方程組得,,
所以滿足條件的直線解析式為y=-x+1.
綜上所述,所以滿足條件的直線解析式為y=x+3和y=-x+1.
點評:此題中C點位置沒有明確,需根據(jù)題意分情況探索,所以需分類討論.分類討論的思想訓(xùn)練學(xué)生思維的嚴(yán)密性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2004•揚州)如圖,直角坐標(biāo)系中,已知點A(3,0),B(t,0)(0<t<),以AB為邊在x軸上方作正方形ABCD,點E是直線OC與正方形ABCD的外接圓除點C以外的另一個交點,連接AE與BC相交于點F.
(1)求證:△OBC≌△FBA;?
(2)一拋物線經(jīng)過O、F、A三點,試用t表示該拋物線的解析式;?
(3)設(shè)題(2)中拋物線的對稱軸l與直線AF相交于點G,若G為△AOC的外心,試求出拋物線的解析式;?
(4)在題(3)的條件下,問在拋物線上是否存在點P,使該點關(guān)于直線AF的對稱點在x軸上?若存在,請求出所有這樣的點;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(03)(解析版) 題型:解答題

(2004•揚州)如圖,反比例函數(shù)y=(k<0)的圖象經(jīng)過點A(-,m),過A作AB⊥x軸于點B,△AOB的面積為.?
(1)求k和m的值;?
(2)若過A點的直線y=ax+b與x軸交于C點,且∠ACO=30°,求此直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年江蘇省揚州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•揚州)如圖,直角坐標(biāo)系中,已知點A(3,0),B(t,0)(0<t<),以AB為邊在x軸上方作正方形ABCD,點E是直線OC與正方形ABCD的外接圓除點C以外的另一個交點,連接AE與BC相交于點F.
(1)求證:△OBC≌△FBA;?
(2)一拋物線經(jīng)過O、F、A三點,試用t表示該拋物線的解析式;?
(3)設(shè)題(2)中拋物線的對稱軸l與直線AF相交于點G,若G為△AOC的外心,試求出拋物線的解析式;?
(4)在題(3)的條件下,問在拋物線上是否存在點P,使該點關(guān)于直線AF的對稱點在x軸上?若存在,請求出所有這樣的點;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《圖形的對稱》(01)(解析版) 題型:選擇題

(2004•揚州)如圖,在一個規(guī)格為4×8的球臺上,有兩個小球P和Q.若擊打小球P經(jīng)過球臺的邊AB反彈后,恰好擊中小球Q,則小球P擊出時,應(yīng)瞄準(zhǔn)AB邊上的( )

A.點O1
B.點O2
C.點O3
D.點O4

查看答案和解析>>

同步練習(xí)冊答案