【題目】(1)先化簡,再求值:其中,a是方程x2+3x+1=0的根.
(2)已知拋物線y=ax2+bx+c的對稱軸為x=2,且經(jīng)過點(diǎn)(1,4)和(5,0),試求該拋物線的表達(dá)式.
【答案】(1),;(2)y=﹣x2+2x+.
【解析】
(1)先把分子分母能因式分解的進(jìn)行因式分解,然后進(jìn)行計(jì)算化簡,再根據(jù)一元二次方程解的定義求出a2+3a=-1,整體代入即可;
(2)利用拋物線的對稱性得到拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)為(1,0),于是可設(shè)拋物線的解析式為y=a(x+1)(x5),然后把(1,4)代入求出a即可.
(1)原式
,
∵a是方程x2+3x+1=0的根,
∴a2+3a+1=0,即a2+3a=-1,
原式=;
(2)∵拋物線的對稱軸為直線x=2,拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(5,0),
∴拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),
∴設(shè)拋物線的解析式為y=a(x+1)(x﹣5),
把(1,4)代入得4=a×2×(﹣4),
解得a=,
∴拋物線的解析式為y=(x+1)(x﹣5)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)E,F分別為BC上的點(diǎn),EF=,∠BAC=135°,∠EAF=90°,tan∠AEF=1.
(1)若1<BE<2,求CF的取值范圍;
(2)若AB=,求△ACF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)如今,“垃圾分類”已逐漸推廣.如圖,垃圾一般可分為:可回收物,廚余垃圾,有害垃圾,其它垃圾.甲拿了一袋有害垃圾,乙拿了一袋廚余垃圾,隨機(jī)扔進(jìn)并排的4個(gè)垃圾桶.
(1)直接寫出甲扔對垃圾的概率;
(2)用列表或畫樹形圖的方法求甲、乙兩人同時(shí)扔對垃圾的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ACB中,∠C=90°,以點(diǎn)A為中心,分別將線段AB, AC 逆時(shí)針旋轉(zhuǎn)60°得到線段AD, AE,連接DE,延長DE交CB于點(diǎn)F.
(1)如圖1,若∠B=30°,∠CFE的度數(shù)為_________;
(2)如圖2,當(dāng)30°<∠B<60°時(shí),
①依題意補(bǔ)全圖2;
②猜想CF與AC的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用一面墻(墻的長度不超過45m),用80m長的籬笆圍一個(gè)矩形場地.
(1)怎樣圍才能使矩形場地的面積為750m2?
(2)能否使所圍矩形場地的面積為810m2,為什么?
(3)怎樣圍才能使圍出的矩形場地面積最大?最大面積為多少?請通過計(jì)算說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB>AC,∠B=45°,AC=5,BC=4;E是AB邊上一點(diǎn),將△BEC沿EC所在直線翻折得到△DEC,DC交AB于F,當(dāng)DE∥AC時(shí),tan∠DCE的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0 ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時(shí),y>0,其中正確的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接杭州G20峰會(huì),某校開展了設(shè)計(jì)“YJG20”圖標(biāo)的活動(dòng),下列圖形中及時(shí)軸對稱圖形又是中心對稱圖形的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某種產(chǎn)品的進(jìn)價(jià)為每件40元,現(xiàn)在的售價(jià)為每件60元,每星期可賣出300件.市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每降價(jià)1元,每星期可多賣出20件,由于供貨方的原因銷量不得超過380件,設(shè)這種產(chǎn)品每件降價(jià)x元(x為整數(shù)),每星期的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)該產(chǎn)品銷售價(jià)定為每件多少元時(shí),每星期的銷售利潤最大?最大利潤是多少元?
(3)該產(chǎn)品銷售價(jià)在什么范圍時(shí),每星期的銷售利潤不低于6000元,請直接寫出結(jié)果.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com