【題目】如圖,△ABC中,點(diǎn)A(﹣2,1)、B(﹣3,4)C(﹣5,2)均在格點(diǎn)上.在所給直角坐標(biāo)系中解答下列問題:
將△ABC平移得△A1B1C1使得點(diǎn)B的對(duì)應(yīng)點(diǎn)B1與原點(diǎn)O重合,在所給直角坐標(biāo)系中畫出圖形;在圖中畫出△ABC關(guān)于y軸對(duì)稱的△A2B2C2 , 并寫出A2、B2、C2的坐標(biāo);在x軸上找一點(diǎn)P,使得△PAB2的周長(zhǎng)最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
【答案】解:如下圖:
△PAB2的周長(zhǎng)最小,P(﹣1,0).
【解析】(1)利用平移的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置,進(jìn)而得出答案;(2)直接利用對(duì)稱圖形的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置進(jìn)而得出答案;(3)利用軸對(duì)稱求最短路線的方法得出答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解作軸對(duì)稱圖形的相關(guān)知識(shí),掌握畫對(duì)稱軸圖形的方法:①標(biāo)出關(guān)鍵點(diǎn)②數(shù)方格,標(biāo)出對(duì)稱點(diǎn)③依次連線,以及對(duì)軸對(duì)稱-最短路線問題的理解,了解已知起點(diǎn)結(jié)點(diǎn),求最短路徑;與確定起點(diǎn)相反,已知終點(diǎn)結(jié)點(diǎn),求最短路徑;已知起點(diǎn)和終點(diǎn),求兩結(jié)點(diǎn)之間的最短路徑;求圖中所有最短路徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段 AB=24,動(dòng)點(diǎn) P 從 A 出發(fā),以每秒 2 個(gè)單位的速度沿射線 AB運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為 t 秒(t>0),M 為 AP 的中點(diǎn).
(1)當(dāng)點(diǎn) P 在線段 AB 上運(yùn)動(dòng)時(shí),
①當(dāng) t 為多少時(shí),PB=2AM?②求2BM-BP的值.
(2)當(dāng) P 在 AB 延長(zhǎng)線上運(yùn)動(dòng)時(shí),N 為 BP 的中點(diǎn),說明線段 MN 的長(zhǎng)度不變,并 求出其值.
(3)在 P 點(diǎn)的運(yùn)動(dòng)過程中,是否存在這樣的 t 的值,使 M、N、B 三點(diǎn)中的一個(gè)點(diǎn) 是以其余兩點(diǎn)為端點(diǎn)的線段的中點(diǎn),若有,請(qǐng)求出 t 的值;若沒有,請(qǐng)說明理 由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被3等分,指針落在每個(gè)扇形內(nèi)的機(jī)會(huì)均等.
(1)現(xiàn)隨機(jī)轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,停止后,指針指向2的概率為 .
(2)小明和小華利用這個(gè)轉(zhuǎn)盤做游戲,若采用下列游戲規(guī)則,你認(rèn)為對(duì)雙方公平嗎?請(qǐng)用列表或畫樹狀圖的方法說明理由.
游戲規(guī)則:隨機(jī)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,停止后,指針各指向一個(gè)數(shù)字,若兩數(shù)之積為偶數(shù),則小明勝;否則小華勝.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,M是BC的中點(diǎn),過點(diǎn)M作ME⊥AB、MF⊥AC,垂足分別為E、F.求證:ME=MF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2x﹣(m﹣2)=0有實(shí)數(shù)根,則m的取值范圍是( )
A.m>1
B.m<1
C.m≥1
D.m≤1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線與軸交于點(diǎn)(0,6).
(1)求;
(2)求該拋物線的頂點(diǎn)坐標(biāo),并畫出該拋物線的大致圖像;
(3)試探索:在該拋物線上是否存在點(diǎn)P,使得以點(diǎn)P為圓心,以適當(dāng)長(zhǎng)為半徑的⊙P與兩坐標(biāo)軸的正半軸都相切?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo)和⊙P的半徑;如果不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線與軸交于A,B(點(diǎn)A在點(diǎn)B的右邊),與軸交于點(diǎn)C.過A,C兩點(diǎn)作直線,P是拋物線上的動(dòng)點(diǎn),過P作PD⊥軸,垂足為D,交直線于點(diǎn)E.設(shè)點(diǎn)P的橫坐標(biāo)為.
(1)求直線的函數(shù)表達(dá)式;
(2)問是否存在點(diǎn)P,使O,E,C,P四點(diǎn)能構(gòu)成平行四邊形,若存在,請(qǐng)求出的值;若不存在,請(qǐng)說明理由.
(3)如圖2,過A點(diǎn)作直線⊥,連接OE,作△AOE的外接圓,交直線于點(diǎn)F,連接OF,EF.當(dāng)△EOF的面積最小時(shí),求點(diǎn)P的坐標(biāo)和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com