【題目】如圖,已知拋物線與x軸交于A(﹣1,0)、B3,0)兩點(diǎn),與y軸交于點(diǎn)C0,3).

1)求拋物線的解析式;

2)點(diǎn)D是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)C、B不重合),過(guò)點(diǎn)DDF⊥x軸于點(diǎn)F,交直線BC于點(diǎn)E,連接BDCD.設(shè)點(diǎn)D的橫坐標(biāo)為m,△BCD的面積為S.求S關(guān)于m的函數(shù)解析式及自變量m的取值范圍,并求出S的最大值;

3)已知M為拋物線對(duì)稱(chēng)軸上一動(dòng)點(diǎn),若△MBC是以BC為直角邊的直角三角形,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo).

【答案】1y=﹣x2+2x+3 2; 3)(1,﹣2),(1,4

【解析】

1)拋物線解析式為yax1)(x3)=ax22x3),將點(diǎn)C坐標(biāo)代入即可求解;

2)先求出直線BC的解析式,設(shè)Dm,﹣m2+2m+3),Em,﹣m+3),得到DE=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,再利用,即可求解;

3)分MC是斜邊、MB是斜邊兩種情況,分別求解即可.

解:(1)拋物線解析式為yax+1)(x3)=ax22x3),

將點(diǎn)C坐標(biāo)代入,得

-3a3,解得:a-1

拋物線解析式為y=﹣x2+2x+3;

2)設(shè)直線BC的函數(shù)解析式為ykx+b

直線BC過(guò)點(diǎn)B3,0),C0,3),

,解得,

∴y=﹣x+3,

設(shè)Dm,﹣m2+2m+3),Em,﹣m+3),

∴DE=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,

,

當(dāng)時(shí),S有最大值,最大值;

3)拋物線y=﹣x2+2x+3的對(duì)稱(chēng)軸為直線x=1

設(shè)點(diǎn)M1m),

MB2m2+4MC21+m32,BC218;

當(dāng)MC是斜邊時(shí),

1+m32m2+4+18

解得:m=﹣2;

當(dāng)MB是斜邊時(shí),

同理可得:m4,

故點(diǎn)M的坐標(biāo)為:(1,﹣2),(1,4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BCx軸平行,AB兩點(diǎn)的縱坐標(biāo)分別為4,2,反比例函數(shù)y(x0)的圖象經(jīng)過(guò)A,B兩點(diǎn),若菱形ABCD的面積為2,則k的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在讀書(shū)月活動(dòng)中,學(xué)校準(zhǔn)備購(gòu)買(mǎi)一批課外讀物.為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛(ài)的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個(gè)類(lèi)別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類(lèi)),如圖是根

據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:

(1)本次調(diào)查中,一共調(diào)查了   名同學(xué);

(2)條形統(tǒng)計(jì)圖中,m=   ,n=   ;

(3)扇形統(tǒng)計(jì)圖中,藝術(shù)類(lèi)讀物所在扇形的圓心角是   度;

(4)學(xué)校計(jì)劃購(gòu)買(mǎi)課外讀物6000冊(cè),請(qǐng)根據(jù)樣本數(shù)據(jù),估計(jì)學(xué)校購(gòu)買(mǎi)其他類(lèi)讀物多少冊(cè)比較合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A40),點(diǎn)B04),CAB中點(diǎn),連接OC,將△AOC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到△AMN,記旋轉(zhuǎn)角為α,點(diǎn)O,C的對(duì)應(yīng)點(diǎn)分別是MN.連接BM,PBM中點(diǎn),連接OP,PN

(Ⅰ)如圖.當(dāng)α45°時(shí),求點(diǎn)M的坐標(biāo);

(Ⅱ)如圖,當(dāng)α180°時(shí),求證:OPPNOPPN;

(Ⅲ)當(dāng)△AOC旋轉(zhuǎn)至點(diǎn)B,M,N共線時(shí),求點(diǎn)M的坐標(biāo)(直接寫(xiě)出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y1=3x5與反比例函數(shù)y2=的圖象相交A2,m),Bn,﹣6)兩點(diǎn),連接OAOB

1)求kn的值;

2)求AOB的面積;

3)直接寫(xiě)出y1 y2時(shí)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=EDF=90°,△EDF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合,將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q

1)如圖,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;

2)如圖,當(dāng)點(diǎn)Q在線段CA的延長(zhǎng)線上時(shí),求證:△BPE∽△CEQ;

3)在(2)的條件下,BP=2CQ=9,則BC的長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)yxx0)的圖象與反比例函數(shù)y的圖象交于點(diǎn)A,若點(diǎn)A繞點(diǎn)B,0)順時(shí)針旋轉(zhuǎn)90°后,得到的點(diǎn)A'仍在y的圖象上,則點(diǎn)A的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:平行四邊形ABCD中,EAB中點(diǎn),AFFD,連E、FACG,則AGGC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),將點(diǎn)向右平移6個(gè)單位長(zhǎng)度,得到點(diǎn)

(1)直接寫(xiě)出點(diǎn)的坐標(biāo);

(2)若拋物線經(jīng)過(guò)點(diǎn),求的值;

(3)若拋物線與線段有且只有一個(gè)公共點(diǎn)時(shí),求拋物線頂點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案