(1)證明:連接CO并延長交⊙O于M,連接AM,
∵PC
2=PA•PB,
∴
.
∵∠P=∠P,
∴△PAC∽△PCB,∠PCA=∠B.
∵∠B=∠M,
∴∠M=∠PCA.
∵CM是直徑,
∴∠MAC=90°.
∴∠ACM+∠M=90°.
∴∠ACM+∠PCA=90°.
即∠PCM=90°.
∴CM⊥PC.
∴PC是⊙O的切線.
(2)解:連接AO,并延長AO交⊙O于N,連接BN,
∵AN是直徑,
∴∠ABN=90°∠N=∠ACB,AN=12.
在Rt△ABN中,AB=ANsin∠ACB=12sin∠ACB=12×
=
.
(3)解:連接OD交AB于F,
∴OD⊥AB.
∵D是劣弧AB的中點,
∴∠ACD=∠BCD.
∵∠PCA=∠B,
∴∠PCE=∠PEC.
∴PC=PE由△PCA∽△PBC得PC=3PA.
∵PC
2=PA•PB,
∴9PA
2=PA•PB.
∴9PA=PB=PA+AB.
∴8PA=AB=
.
∴PA=
.
∴PC=PE=
.
AE=
,AB=
,AF=
,EF=
在Rt△OAF中,可求得OF=4,
∴DF=OD-OF=6-4=2,
∴DE=3.
∵AE•EB=DE•CE,
∴CE=5.
分析:(1)連接CO并延長交⊙O于M,連接AM,根據(jù)兩組對應(yīng)邊的比相等且相應(yīng)的夾角相等的兩個三角形相似得到△PAC∽△PCB,從而得到∠PCA=∠B,再根據(jù)角之間的關(guān)系可得到CM⊥PC即PC是⊙O的切線;
(2)連接AO,并延長AO交⊙O于N,連接BN,根據(jù)同弧所對角相等得到∠N=∠ACB,已知AN的長及sin∠ACB的值,根據(jù)三角函數(shù)公式即可求得AB的長;
(3)連接OD交AB于F,由已知可推出△PCA∽△PBC,根據(jù)對應(yīng)邊的相似比相等可求得PA,PC的長,再根據(jù)勾股定理求得OF的長,那么再求CE的長就不難了.
點評:此題主要考查學(xué)生對切線的判定,解直角三角形及相似三角形的判定等知識點的綜合運用.