某文具店銷售一種進(jìn)價為10元/個的簽字筆,物價部門規(guī)定這種簽字筆的售價不得高于14元/個,根據(jù)以往經(jīng)驗:以12元/個的價格銷售,平均每周銷售簽字筆100個;若每個簽字筆的銷售價格每提高1元,則平均每周少銷售簽字筆10個. 設(shè)銷售價為x元/個.
(1)該文具店這種簽字筆平均每周的銷售量為           個(用含x的式子表示);
(2)求該文具店這種簽字筆平均每周的銷售利潤w(元)與銷售價x(元/個)之間的函數(shù)關(guān)系式;
(3)當(dāng)x取何值時,該文具店這種簽字筆平均每周的銷售利潤最大?最大利潤是多少元?

(1)(220-10x);(2)(3)當(dāng)x=14時,該文具店這種簽字筆平均每周的銷售利潤最大是320元.

解析試題分析:用含的式子表示文具店這種簽字筆平均每周的銷售量為(220-10x)個,列出函數(shù)關(guān)系式,再運用二次函數(shù)的性質(zhì)解決問題,由題意可知所以x=14時,最大為320.
試題解析:(1)(220-10x);
(2)            3分
           5分

           6分
∵拋物線的開口向下,在對稱軸直線x=16的左側(cè),的增大而增大.8分
由題意可知,            9分
∴當(dāng)x=14時,最大為320.
∴當(dāng)x=14時,該文具店這種簽字筆平均每周的銷售利潤最大是320元.
考點:1.根據(jù)實際問題列函數(shù)關(guān)系式. 2.二次函數(shù)的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過A(3,0)、B(4,4)、D(2, n)三點.

(1)求拋物線的解析式及點D坐標(biāo);
(2)點M是拋物線對稱軸上一動點,求使BM-AM的值最大時的點M的坐標(biāo);
(3)如圖2,將射線BA沿BO翻折,交y軸于點C,交拋物線于點N,求點N的坐標(biāo);
(4)在(3)的條件下,連結(jié)ON,OD,如圖2,請求出所有滿足△POD∽△NOB的點P坐標(biāo)(點P、O、D分別與點N、O、B對應(yīng)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=ax2+bx(a>0)經(jīng)過原點O和點A(2,0).

(1)寫出拋物線的對稱軸與x軸的交點坐標(biāo);
(2)點(x1,y1),(x2,y2)在拋物線上,若x1<x2<1,比較y1,y2的大;
(3)點B(﹣1,2)在該拋物線上,點C與點B關(guān)于拋物線的對稱軸對稱,求直線AC的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線與x軸交與點A(1,0)與點B, 且過點C(0,3),

(1)求該拋物線的解析式;
(2)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?,若存在,求出點P的坐標(biāo)及△PBC的面積最大值.若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線與直線交于點.點是拋物線上,之間的一個動點,過點分別作軸、軸的平行線與直線交于點,

(1)求拋物線的函數(shù)解析式;
(2)若點的橫坐標(biāo)為2,求的長;
(3)以,為邊構(gòu)造矩形,設(shè)點的坐標(biāo)為,求出之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,矩形OABC在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A(0,4),C(2,0),將矩形OABC繞點O按順時針方向旋轉(zhuǎn)1350,得到矩形EFGH(點E與O重合).

(1)若GH交y軸于點M,則∠FOM=      ,OM=        
(2)矩形EFGH沿y軸向上平移t個單位.
①直線GH與x軸交于點D,若AD∥BO,求t的值;
②若矩形EFHG與矩形OABC重疊部分的面積為S個平方單位,試求當(dāng)0<t≤時,S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

矩形紙片ABCD中,AB=5,AD=4.
(1)如圖1,四邊形MNEF是在矩形紙片ABCD中裁剪出的一個正方形.你能否在該矩形中裁剪出一個面積最大的正方形,最大面積是多少?說明理由;

(2)請用矩形紙片ABCD剪拼成一個面積最大的正方形.要求:在圖2的矩形ABCD中畫出裁剪線,并在網(wǎng)格中畫出用裁剪出的紙片拼成的正方形示意圖(使正方形的頂點都在網(wǎng)格的格點上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線與拋物線相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上。

(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標(biāo);若不存在,請說明理由;
(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點C(0,1),頂點為Q(2,3),點D在x軸正半軸上,且OD=OC.

(1)求直線CD的解析式;
(2)求拋物線的解析式;
(3)將直線CD繞點C逆時針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點E,求證:△CEQ∽△CDO;
(4)在(3)的條件下,若點P是線段QE上的動點,點F是線段OD上的動點,問:在P點和F點移動過程中,△PCF的周長是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案