【題目】在平面直角坐標(biāo)系中,直線ly=x-1x軸交于點(diǎn)A1,如圖所示,依次作正方形A1B1C1O、正方形A2B2C2C1、、正方形AnBnCnCn-1,使得點(diǎn)A1、A2、A3在直線l上,點(diǎn)C1、C2、C3y軸正半軸上,則點(diǎn)B2019的橫坐標(biāo)是____

【答案】22018

【解析】

根據(jù)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征找出A1、A2、A3、A4的坐標(biāo),結(jié)合圖形即可得知點(diǎn)Bn是線段CnAn+1的中點(diǎn),由此即可得出點(diǎn)B2019的坐標(biāo).

當(dāng)y=0時(shí),有x-1=0,

解得:x=1

∴點(diǎn)A1的坐標(biāo)為(1,0).

∵四邊形A1B1C1O為正方形,

∴點(diǎn)B1的坐標(biāo)為(1,1).

同理,可得出:A22,1),A34,3),A48,7),A516,15),

B22,3),B34,7),B48,15),B516,31),,

Bn)(n為正整數(shù)),

∴點(diǎn)的坐標(biāo)是(22018,22019-1).

故答案為:22018

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E是AD上一點(diǎn),PQ垂直平分BE,分別交AD、BE、BC于點(diǎn)P、O、Q,連接BP、EQ

(1)求證:四邊形BPEQ是菱形;

(2)若AB=6,F(xiàn)為AB的中點(diǎn),OF+OB=9,求PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC,BD交于點(diǎn)OAEBCCB延長(zhǎng)線于E,CFAEAD延長(zhǎng)線于點(diǎn)F

1)求證:四邊形AECF是矩形;

2)連接OE,若AE=4,AD=5,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班數(shù)學(xué)科代表小芳對(duì)本年級(jí)同學(xué)參加課外興趣小組活動(dòng)情況進(jìn)行隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查數(shù)據(jù)小芳同學(xué)還制作了參加課外興趣小組活動(dòng)情況的兩個(gè)統(tǒng)計(jì)圖(見下圖)

(1)此次被調(diào)查的人數(shù)是多少?

(2)將圖補(bǔ)充完整;

(3)求出圖中表示寫作興趣小組的扇形圓心角度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°AC=3,BC=4,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)EF,則線段B′F的長(zhǎng)為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形紙片ABCD的兩邊ABBC=21,過點(diǎn)B折疊紙片,使點(diǎn)A落在邊CD上的點(diǎn)F處,折痕為BE.若AB的長(zhǎng)為4,則EF的長(zhǎng)為(  )

A. 8-4B. 2C. 4 6D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:已知RtABC的周長(zhǎng)為30,斜邊長(zhǎng)c=13,求ABC的面積.、

解法展示:設(shè)RtABC的兩直角邊長(zhǎng)分別為a,b,則a+b+c=______,

因?yàn)?/span>c=13,所以a+b=______,

所以(a+b2=______,所以a2+ b2+_____=289

因?yàn)?/span>a2+b2=c2,所以c2+2ab=289,

所以⑤______+2ab=289,所以ab=______(第1步),

所以ABC的面積=ab=×______=______(第2步).

合作探究:(1)對(duì)解法展示進(jìn)行填空.

(2)上述解題過程中,由第1步到第2步體現(xiàn)出來的數(shù)學(xué)思想是______(填序號(hào)).

①整體思想;②數(shù)形結(jié)合思想;③分類討論思想.

方法遷移:

(3)已知一直角三角形的面積為24,斜邊長(zhǎng)為10,求這個(gè)直角三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題:

1)這次統(tǒng)計(jì)共抽查了  名學(xué)生;在扇形統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)為   ;

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)該校共有1500名學(xué)生,請(qǐng)估計(jì)該校最喜歡用微信進(jìn)行溝通的學(xué)生有多少名?

4)某天甲、乙兩名同學(xué)都想從微信、“QQ”、電話三種溝通方式中選一種方式與對(duì)方聯(lián)系,請(qǐng)用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選中同一種溝通方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtΔOAB中,點(diǎn)O0,0),點(diǎn)A60),點(diǎn)B0,6),斜邊AB的中點(diǎn)C.

點(diǎn)E從點(diǎn)B出發(fā),沿BO方向,點(diǎn)F從點(diǎn)O出發(fā),沿OA方向,速度都是1個(gè)單位/秒,時(shí)間是t秒,連接CECF、EF

1)直接寫出C點(diǎn)坐標(biāo)______.

2)判斷ΔCEF的形狀,并證明;

3)在0<t<6時(shí),以CE、F、O四點(diǎn)組成的四邊形面積是否發(fā)生變化?不變,求出這個(gè)值;變化,用含t的式子表示;

4)在t>6時(shí),以C、E、F、O四點(diǎn)組成的四邊形面積是否發(fā)生變化?不變,求出這個(gè)值;變化,用含t的式子表示.

查看答案和解析>>

同步練習(xí)冊(cè)答案