【題目】如圖,在△ABC中,AB=AC,AEABBC于點(diǎn)E,∠BAC=120°,AE=3cm,則BC的長(zhǎng)是_______.

【答案】9cm

【解析】

先在△ABC中,根據(jù)等邊對(duì)等角的性質(zhì)及三角形內(nèi)角和定理得出∠B=∠C30°,由AEAB,∠C30°,得出BE2AE=6,再證明∠EAC=∠C30°,那么AECE3,于是BCBE+CE9

ABAC,

∴∠B=∠C

∵∠BAC120°,∠BAC+∠B+∠C180°

∴∠B=∠C30°,

AEAB,

∴∠BAE90°

BE2AE=6,∠EAC=∠BACBAE30°

∴∠EAC=∠C,

AECE3,

BCBECE6+39cm

故答案為:9cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A,B,C在數(shù)軸上對(duì)應(yīng)的數(shù)分別為1,3,5,點(diǎn)P在數(shù)軸上對(duì)應(yīng)的數(shù)是﹣2.點(diǎn)P關(guān)于點(diǎn)A的對(duì)稱點(diǎn)為P1,點(diǎn)P1關(guān)于點(diǎn)B的對(duì)稱點(diǎn)為P2,點(diǎn)P2關(guān)于點(diǎn)C的對(duì)稱點(diǎn)為P3,點(diǎn)P3關(guān)于點(diǎn)A的對(duì)稱點(diǎn)為P4,P1P2018的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,直線AB:y=x+by軸于點(diǎn)A(0,4),交x軸于點(diǎn)B.

(1)求點(diǎn)B的坐標(biāo);

(2)直線l垂直平分OBAB于點(diǎn)D,交x軸于點(diǎn)E,點(diǎn)P是直線l上一動(dòng)點(diǎn),且在點(diǎn)D的上方,設(shè)點(diǎn)P的縱坐標(biāo)為n.

①用含n的代數(shù)式表示△ABP的面積;

②當(dāng)SABP=8時(shí),求點(diǎn)P的坐標(biāo);

(3)(2)中②的條件下,以PB為斜邊作等腰直角△PBC,求點(diǎn)C的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下列各式分解因式:

1

2

3

4

5

6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB=AC,AC的垂直平分線MN交AB于D,交AC于E.

(1)若A=40°,求BCD的度數(shù);

(2)若AE=5,BCD的周長(zhǎng)17,求ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,DBC的中點(diǎn),DEABDFAC,垂足分別為點(diǎn)EF,BE=CF.

(1)求證:ABC是等腰三角形.

(2)判斷點(diǎn)D是否在∠BAC的角平分線上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B的坐標(biāo)為(3,0),

1)在圖中作出線段AB以二四象限的角平分線為對(duì)稱軸的對(duì)稱線段CD,并直接寫(xiě)出四邊形ABDC的面積為 ;

2)若點(diǎn)C為格點(diǎn)(橫縱坐標(biāo)均為整數(shù)),且ABOC,AB=OC,作出線段OC;并寫(xiě)出C點(diǎn)坐標(biāo)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的菱形ABCD中,DAB=60°,連接對(duì)角線AC,以AC為邊作第二個(gè)菱形ACC1D1,使∠D1AC=60°,連接AC1,再以AC1為邊作第三個(gè)菱形AC1C2D2,使∠D2AC1=60°;…,按此規(guī)律所作的第六個(gè)菱形的邊長(zhǎng)為( )

A. 9 B. C. 27 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCAB=AC
1)作圖:在AC上有一點(diǎn)D,延長(zhǎng)BD,并在BD的延長(zhǎng)線上取點(diǎn)E,使AE=AB,連AE,作∠EAC的平分線AF,AFDE于點(diǎn)F(用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);
2)在(1)的條件下,連接CF,求證:∠BAC=BFC

查看答案和解析>>

同步練習(xí)冊(cè)答案