【題目】已知,在中, ,,,,且則的長度等于___.
【答案】或3.
【解析】
分兩種情況:①CD在BC下側(cè),如圖1,過點D作AB的垂線于點E,在Rt△ADE中,先求出AE,DE的長,然后利用勾股定理求出AD的長;
②CD在BC上側(cè),如圖2,過點D作AB的垂線交AB的延長線于點E,在Rt△ADE中,先求出AE,DE的長,然后利用勾股定理求出AD的長.
解:分兩種情況:
①如圖1,過點D作AB的垂線于點E,
圖1
∵∠B=90°,AB∥CD,
∴∠BCD=90°,
又∠BED=90°,
∴四邊形CDEB為矩形,
∴BE=CD=2,DE=BC=3,
∴AE=AB-BE=2.
∴在Rt△ADE中,根據(jù)勾股定理得,
AD=
②如圖2,過點D作AB的垂線交AB的延長線于點E,
圖2
由①可得,DE=BC=3,BE=CD=2,
∴AE=BE+AB=6,
∴在Rt△ADE中,根據(jù)勾股定理得,
AD=
故答案為:或3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是等邊三角形.
(1)將繞點逆時針旋轉(zhuǎn)角();得到,和所在直線相交于點.
①如圖,當(dāng)時,與是否全等? (填“是”或“否”), 度;
②當(dāng)旋轉(zhuǎn)到如圖所在位置時,求的度數(shù);
(2)如圖,在和上分別截取點和,使,,連接,將繞點逆時針旋轉(zhuǎn)角(),得到,和所在直線相交于點,請利用圖探索的度數(shù),直接寫出結(jié)果,不必說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價為每個30元.市場調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個)與銷售單價x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).
設(shè)這種雙肩包每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)解析式;
(2)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種雙肩包的銷售單價不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某二次函數(shù)的圖象,將其向左平移個單位后的圖象的函數(shù)解析式為,則下列結(jié)論中正確的有( )
;;;.
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,.設(shè)為最長邊.當(dāng)時,是直角三角形;當(dāng)時,利用代數(shù)式和的大小關(guān)系,探究的形狀(按角分類).
(1)當(dāng)三邊分別為6、8、9時,為______三角形;當(dāng)三邊分別為6、8、11時,為______三角形.
(2)猜想,當(dāng)______時,為銳角三角形;當(dāng)______時,為鈍角三角形.
(3)判斷當(dāng),時,的形狀,并求出對應(yīng)的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過、、三點.
求拋物線的解析式;
如圖①,在拋物線的對稱軸上是否存在點,使得四邊形的周長最。咳舸嬖,求出四邊形周長的最小值;若不存在,請說明理由.
如圖②,點是線段上一動點,連接,在線段上是否存在這樣的點,使為等腰三角形且為直角三角形?若存在,求點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點A在y軸的正半軸上,點C在x軸的正半軸上,反比例函數(shù)y=(k≠0)的圖象的一個分支與AB交于點D,與BC交于點E,DF⊥x軸于點F,EG⊥y軸于點G,交DF于點H.若矩形OGHF和矩形HDBE的面積分別是2和5,則k的值是( 。
A. 7 B. C. 2+ D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸交于點,,與軸交于點,直線經(jīng)過,兩點.
求拋物線的解析式;
在上方的拋物線上有一動點.
①如圖,當(dāng)點運動到某位置時,以,為鄰邊的平行四邊形第四個頂點恰好也在拋物線上,求出此時點的坐標(biāo);
②如圖,過點,的直線交于點,若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com