【題目】如圖,AB∥CD,CE∥BF,
A. E、F、D在一直線上,BC與AD交于點O,且OE=OF,則圖中有全等三角形的對數(shù)為( 。
A. 2
B. 3
C. 4
D. 5
【答案】B
【解析】分析已知和所求,先由CE∥BF,根據(jù)平行線性質(zhì)得出內(nèi)錯角∠ECO=∠FBO,再由對頂角∠EOC=∠FOB和OE=OF,根據(jù)三角形的判定即可判定兩個三角形全等;由上分析所得三角形全等,根據(jù)全等三角形的性質(zhì)可得對應(yīng)邊相等,再根據(jù)三角形的判定定理即可判定另兩對三角形是否全等.
①∵CE∥BF,
∴∠OEC=∠OFB,
又∵OE=OF,∠COE=∠BOF,
∴△OCE≌△OBF,
∴OC=OB,CE=BF;
②∵AB∥CD,
∴∠ABO=∠DCO,∠AOB=∠COD,
又∵OB=OC,
∴△AOB≌△DOC;
③∵AB∥CD,CE∥BF,
∴∠D=∠A,∠CED=∠COD,
又∵CE=BF,
∴△CDE≌△BAF.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,點E是CD的中點,點F是BC邊上的一點,且EF⊥AE.求證:AE平分∠DAF.
小林同學(xué)讀題后有一個想法,延長FE,AD交于點M,要證AE平分∠DAF,只需證△AMF是等腰三角形即可.請你參考小林的想法,完成此題的證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若AB=4+ ,BC=2 ,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B,C,D在同一條直線上,點E,F分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.
(1)求證:四邊形BFCE是平行四邊形;
(2)若AD=10,DC=3,∠EBD=60°,則BE= 時,四邊形BFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從A點出發(fā)向北偏東60°方向走了80m米到達(dá)B地,從B地他又向西走了160m到達(dá)C地.
(1)用1:4000的比例尺(即圖上1cm等于實際距離40m)畫出示意圖,并標(biāo)上字母;
(2)用刻度尺出AC的距離(精確到0.01cm),并求出C但距A點的實際距離(精確到1m);
(3)用量角器測出C點相對于點A的方位角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC和△DEF中,已知AB=DE,∠A=∠D,若要得到△ABC≌△DEF,則還要補充一個條件,在下列補充方法:①AC=DF;②∠B=∠E;③∠B=∠F;④∠C=∠F ⑤BC=EF中,則錯誤結(jié)論的序號是__________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強公民的節(jié)水意識,合理利用水資源,某市采用價格調(diào)控的手段達(dá)到節(jié)水的目的,該市自來水收費的價目表如下表(注:水費按月份結(jié)算,表示立方米):
價目表 | |
每月用水量 | 單價 |
不超出的部分 | 元 |
超出不超出的部分 | 元 |
超出的部分 | 元 |
注:水費按月結(jié)算 |
例:若某戶居民月份用水,應(yīng)收水費為(元).
請根據(jù)上表的內(nèi)容解答下列問題:
填空:若該戶居民月份用水,則應(yīng)收水費________元;
若該戶居民月份用水(其中),則應(yīng)收水費多少元?(用含的表示,并化簡)
若該戶居民,兩個月共用水(月份用水量超過了月份),設(shè)月份用水,求該戶居民,兩個月共交水費多少元?(用含的表示,并化簡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索規(guī)律:觀察下面由“※”組成的圖案和算式,解答問題:
(1)請猜想1+3+5+7+9+…+19=_______________________;
(2)請猜想1+3+5+7+9+…+(2n-1)+(2n+1) =___________;
(3)請用上述規(guī)律計算:51+53+55+…+2011+2013.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是拋物線y=2(x﹣2)2對稱軸上的一個動點,直線x=t平行y軸,分別與y=x、拋物線交于點A,B.若△ABP是以點A或點B為直角頂點的等腰直角三角形,求滿足條件的t的值,則t= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com