【題目】如圖,在矩形ABCD中,AB=1,對(duì)角線AC , BD相交于點(diǎn)O,過(guò)點(diǎn)OEFAC,分別交射線AD與射線CB于點(diǎn)E和點(diǎn)F,連接CE,AF

(1)求證:四邊形AECF是菱形.

(2)當(dāng)點(diǎn)分別在邊上時(shí),設(shè),菱形的面積是,求關(guān)于的函數(shù)關(guān)系式.

(3)當(dāng)是等腰三角形時(shí),求的長(zhǎng)度.

【答案】(1)證明見(jiàn)解析;(2)(3).

【解析】

1)由,推出EO=OF,又,推出四邊形EBFD是平行四邊形,再由即可證明四邊形是菱形;
2)由勾股定理表示出AC、AO的值,由cosDAC=,求出AE值,然后根據(jù)菱形的性質(zhì)即可解決問(wèn)題;
3)分在線段延長(zhǎng)線上時(shí)和在線段上時(shí)兩種情形分別討論求解即可;

(1)四邊形是矩形,

, , ,

,

, , ,

四邊形是平行四邊形,且

∴四邊形是菱形;

(2)由題意得:,

,

,

,

(3)①當(dāng)在線段延長(zhǎng)線上時(shí),

為等腰三角形,

.

,

,

,

解得

②當(dāng)在線段上時(shí),

為等腰三角形,

,

,

,,

綜上所述:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線的圖象經(jīng)過(guò)點(diǎn)C(0,-2),頂點(diǎn)D的坐標(biāo)為(1),與軸交于AB兩點(diǎn).

(1)求拋物線的解析式.

(2)連接AC,E為直線AC上一點(diǎn),當(dāng)△AOC∽△AEB時(shí),求點(diǎn)E的坐標(biāo)和的值.

3)點(diǎn)F0)是軸上一動(dòng)點(diǎn),當(dāng)為何值時(shí),的值最小.并求出這個(gè)最小值.

4)點(diǎn)C關(guān)于軸的對(duì)稱點(diǎn)為H,當(dāng)取最小值時(shí),在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△QHF是直角三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)ya(x1)2+4的圖象經(jīng)過(guò)點(diǎn)(1,0)

(1)求這個(gè)二次函數(shù)的解析式;

(2)判斷這個(gè)二次函數(shù)的開(kāi)口方向,對(duì)稱軸和頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:二次函數(shù)中的滿足下表:

]

1)請(qǐng)直接寫(xiě)出m的值為_________

2)求出這個(gè)二次函數(shù)的解析式.

3)當(dāng)時(shí),則y的取值范圍為______________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=kx﹣1的圖象經(jīng)過(guò)點(diǎn)P,且y的值隨x值的增大而增大,則點(diǎn)P的坐標(biāo)可以為( 。

A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】4張相同的卡片上分別寫(xiě)有數(shù)字2,3,4,5將卡片的背面向上,洗勻后從中任意抽取1 張,將卡片上的數(shù)字作為被減數(shù);一只不透明的袋子中裝有標(biāo)號(hào)2,3,43個(gè)小球,這些球除標(biāo)號(hào)外都相同,攪勻后從中任意摸出一個(gè)球,將摸到的球的標(biāo)號(hào)作為減數(shù).

(1)用樹(shù)狀圖或列表的方法求這兩個(gè)數(shù)的差為0的概率;

(2)如果游戲規(guī)則規(guī)定:當(dāng)抽到的這兩個(gè)數(shù)的差為非負(fù)數(shù)時(shí),則甲獲勝;否則,乙獲勝,你認(rèn)為這樣的規(guī)則公平嗎?如果不公平,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(9)已知:ABCD的兩邊AB,AD的長(zhǎng)是關(guān)于x的方程的兩個(gè)實(shí)數(shù)根.

1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);

2)若AB的長(zhǎng)為2,那么ABCD的周長(zhǎng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax24ax+3a

(1)a=1,則函數(shù)y的最小值為_______.

(2)當(dāng)1≤x≤4時(shí),y的最大值是4,則a的值為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋里裝有分別標(biāo)有漢字“書(shū)”、“香”、“歷”、“城”的四個(gè)小球,除漢字不同之外,小球沒(méi)有任何區(qū)別,每次摸球前先攪拌均勻.

1)若從中任取一個(gè)球,球上的漢字剛好是“書(shū)”的概率為_(kāi)_________;

2)從中在取一球,不放回,再?gòu)闹腥稳∫磺,?qǐng)用樹(shù)狀圖或列表的方法,求取出的兩個(gè)球上的漢字能組成“歷城”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案