【題目】下列判斷正確的是( )
A.“打開電視機(jī),正在播NBA籃球賽”是必然事件
B.“擲一枚硬幣正面朝上的概率是”表示每擲硬幣2次就必有1次反面朝上
C.一組數(shù)據(jù)2,3,4,5,5,6的眾數(shù)和中位數(shù)都是5
D.若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
【答案】D
【解析】
根據(jù)方差、隨機(jī)事件、中位數(shù)、眾數(shù)以及概率的意義,分別對每一項(xiàng)進(jìn)行分析即可.
A. “打開電視機(jī),正在播NBA籃球賽”是隨機(jī)事件,故本選項(xiàng)錯(cuò)誤;
B. “擲一枚硬幣正面朝上的概率是”表示進(jìn)行大量重復(fù)試驗(yàn)時(shí),硬幣正面朝上的次數(shù)是總次數(shù)的,而并不表示每擲硬幣2次就必有1次反面朝上,故本選項(xiàng)錯(cuò)誤;
C. 一組數(shù)據(jù)2,3,4,5,5,6的眾數(shù)是5,中位數(shù)是4.5,故本選項(xiàng)錯(cuò)誤;
D. 因?yàn)?/span>,所以乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定,故本選項(xiàng)正確.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊在正方形的邊上,是的中點(diǎn),的平分線過點(diǎn),交于點(diǎn),連接,,與交于點(diǎn),對于下面四個(gè)結(jié)論:①;②且;③;④,其中正確結(jié)論的序號為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)(,,是常數(shù),)圖象的一部分,與軸的交點(diǎn)在點(diǎn)和之間,對稱軸是.有下列說法:①;②;③;④(為實(shí)數(shù));⑤當(dāng)時(shí),.其中正確的是______(填寫所有正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC(頂點(diǎn)為網(wǎng)格線的交點(diǎn))及過格點(diǎn)的直線l.
(1)畫出△ABC關(guān)于直線l對稱的△A1B1C1;
(2)將△ABC向上平移3個(gè)單位長度,再向左平移1個(gè)單位長度,畫出平移后的△A2B2C2;
(3)以A、A1、A2為頂點(diǎn)的三角形中,tan∠A2AA1= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0 ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時(shí),y>0,其中正確的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在菱形ABCD的對角線BD上,連接AE,且AE=BE,⊙O是△ABE的外接圓,連接OB.
(1)求證:OB⊥BC;
(2)若BD=,tan∠OBD=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,每個(gè)小正方形的邊長均為1,則下列A、B、C、D四個(gè)圖中的三角形(陰影部分)與△EFG相似的是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察猜想:(1)如圖①,在Rt△ABC中,∠BAC=90°,AB=AC=3,點(diǎn)D與點(diǎn)A重合,點(diǎn)E在邊BC上,連接DE,將線段DE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線段DF,連接BF,BE與BF的位置關(guān)系是 ,BE+BF= ;
探究證明:(2)在(1)中,如果將點(diǎn)D沿AB方向移動(dòng),使AD=1,其余條件不變,如圖②,判斷BE與BF的位置關(guān)系,并求BE+BF的值,請寫出你的理由或計(jì)算過程;
拓展延伸:(3)如圖③,在△ABC中,AB=AC,∠BAC=a,點(diǎn)D在邊BA的延長線上,BD=n,連接DE,將線段DE繞著點(diǎn)D順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角∠EDF=a,連接BF,則BE+BF的值是多少?請用含有n,a的式子直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一條筆直公路BD的正上方A處有一探測儀,AD=24m,∠D=90°,一輛轎車從B點(diǎn)勻速向D點(diǎn)行駛,測得∠ABD=31°,2秒后到達(dá)C點(diǎn),測得∠ACD=50°.
(Ⅰ)求B,C兩點(diǎn)間的距離(結(jié)果精確到1m);
(Ⅱ)若規(guī)定該路段的速度不得超過15m/s,判斷此轎車是否超速.
參考數(shù)據(jù):tan31°≈0.6,tan50°≈1.2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com